fix in bp call

This commit is contained in:
svlandeg 2019-05-20 23:54:55 +02:00
parent 89e322a637
commit 0a15ee4541
2 changed files with 38 additions and 46 deletions

View File

@ -13,7 +13,7 @@ from examples.pipeline.wiki_entity_linking import run_el, training_set_creator,
from spacy._ml import SpacyVectors, create_default_optimizer, zero_init, logistic
from thinc.api import chain, concatenate, flatten_add_lengths, clone, with_flatten
from thinc.v2v import Model, Maxout, Affine
from thinc.v2v import Model, Maxout, Affine, ReLu
from thinc.t2v import Pooling, mean_pool, sum_pool
from thinc.t2t import ParametricAttention
from thinc.misc import Residual
@ -28,16 +28,16 @@ class EL_Model:
PRINT_LOSS = False
PRINT_F = True
PRINT_TRAIN = True
PRINT_TRAIN = False
EPS = 0.0000000005
CUTOFF = 0.5
INPUT_DIM = 300
ENTITY_WIDTH = 4 # 64
ARTICLE_WIDTH = 8 # 128
HIDDEN_WIDTH = 6 # 64
ENTITY_WIDTH = 64 # 4
ARTICLE_WIDTH = 128 # 8
HIDDEN_WIDTH = 64 # 6
DROP = 0.00
DROP = 0.1
name = "entity_linker"
@ -91,18 +91,18 @@ class EL_Model:
print()
# TODO: proper batches. Currently 1 article at the time
# TODO shuffle data (currently positive is always followed by several negatives)
article_count = 0
for article_id, inst_cluster_set in train_inst.items():
try:
# if to_print:
# print()
print(article_count, "Training on article", article_id)
# print(article_count, "Training on article", article_id)
article_count += 1
article_docs = list()
entities = list()
golds = list()
for inst_cluster in inst_cluster_set:
if instance_pos_count < 2: # TODO del
article_docs.append(train_doc[article_id])
entities.append(train_pos.get(inst_cluster))
golds.append(float(1.0))
@ -113,19 +113,12 @@ class EL_Model:
golds.append(float(0.0))
instance_neg_count += 1
for k in range(10):
print()
print("update", k)
print()
# print("article docs", article_docs)
print("entities", entities)
print("golds", golds)
print()
self.update(article_docs=article_docs, entities=entities, golds=golds)
# dev eval
self._test_dev(dev_inst, dev_pos, dev_neg, dev_doc, print_string="dev_inter", avg=False)
# self._test_dev(dev_inst, dev_pos, dev_neg, dev_doc, print_string="dev_inter", avg=False)
self._test_dev(dev_inst, dev_pos, dev_neg, dev_doc, print_string="dev_inter_avg", avg=True)
print()
except ValueError as e:
print("Error in article id", article_id)
@ -133,11 +126,12 @@ class EL_Model:
print()
print("Trained on", instance_pos_count, "/", instance_neg_count, "instances pos/neg")
print()
self._test_dev(train_inst, train_pos, train_neg, train_doc, print_string="train_post", avg=False)
if self.PRINT_TRAIN:
# print()
# self._test_dev(train_inst, train_pos, train_neg, train_doc, print_string="train_post", avg=False)
self._test_dev(train_inst, train_pos, train_neg, train_doc, print_string="train_post_avg", avg=True)
self._test_dev(dev_inst, dev_pos, dev_neg, dev_doc, print_string="dev_post", avg=False)
self._test_dev(dev_inst, dev_pos, dev_neg, dev_doc, print_string="dev_post_avg", avg=True)
# self._test_dev(dev_inst, dev_pos, dev_neg, dev_doc, print_string="dev_post", avg=False)
# self._test_dev(dev_inst, dev_pos, dev_neg, dev_doc, print_string="dev_post_avg", avg=True)
def _test_dev(self, instances, pos, neg, doc, print_string, avg=False, calc_random=False):
predictions = list()
@ -170,8 +164,7 @@ class EL_Model:
# TODO: combine with prior probability
p, r, f = run_el.evaluate(predictions, golds, to_print=False)
if self.PRINT_F:
# print("p/r/F", print_string, round(p, 1), round(r, 1), round(f, 1))
print("F", print_string, round(f, 1))
print("p/r/F", print_string, round(p, 1), round(r, 1), round(f, 1))
loss, d_scores = self.get_loss(self.model.ops.asarray(predictions), self.model.ops.asarray(golds))
if self.PRINT_LOSS:
@ -242,8 +235,7 @@ class EL_Model:
>> Residual(zero_init(Maxout(in_width, in_width))) \
>> zero_init(Affine(hidden_width, in_width, drop_factor=0.0))
# TODO: ReLu instead of LN(Maxout) ?
# TODO: more convolutions ?
# TODO: ReLu or LN(Maxout) ?
# sum_pool or mean_pool ?
return encoder
@ -262,17 +254,17 @@ class EL_Model:
def update(self, article_docs, entities, golds, apply_threshold=True):
doc_encodings, bp_doc = self.article_encoder.begin_update(article_docs, drop=self.DROP)
print("doc_encodings", len(doc_encodings), doc_encodings)
# print("doc_encodings", len(doc_encodings), doc_encodings)
entity_encodings, bp_entity = self.entity_encoder.begin_update(entities, drop=self.DROP)
print("entity_encodings", len(entity_encodings), entity_encodings)
# print("entity_encodings", len(entity_encodings), entity_encodings)
concat_encodings = [list(entity_encodings[i]) + list(doc_encodings[i]) for i in range(len(entities))]
# print("concat_encodings", len(concat_encodings), concat_encodings)
predictions, bp_model = self.model.begin_update(np.asarray(concat_encodings), drop=self.DROP)
predictions = self.model.ops.flatten(predictions)
print("predictions", predictions)
# print("predictions", predictions)
golds = self.model.ops.asarray(golds)
loss, d_scores = self.get_loss(predictions, golds)
@ -292,7 +284,7 @@ class EL_Model:
# print("d_scores", d_scores)
model_gradient = bp_model(d_scores, sgd=self.sgd)
print("model_gradient", model_gradient)
# print("model_gradient", model_gradient)
doc_gradient = list()
entity_gradient = list()
@ -300,11 +292,11 @@ class EL_Model:
doc_gradient.append(list(x[0:self.ARTICLE_WIDTH]))
entity_gradient.append(list(x[self.ARTICLE_WIDTH:]))
print("doc_gradient", doc_gradient)
print("entity_gradient", entity_gradient)
# print("doc_gradient", doc_gradient)
# print("entity_gradient", entity_gradient)
bp_doc(doc_gradient)
bp_entity(entity_gradient)
bp_doc(doc_gradient, sgd=self.sgd_article)
bp_entity(entity_gradient, sgd=self.sgd_entity)
def _get_training_data(self, training_dir, entity_descr_output, dev, limit, to_print):
id_to_descr = kb_creator._get_id_to_description(entity_descr_output)

View File

@ -111,7 +111,7 @@ if __name__ == "__main__":
print("STEP 6: training", datetime.datetime.now())
my_nlp = spacy.load('en_core_web_md')
trainer = EL_Model(kb=my_kb, nlp=my_nlp)
trainer.train_model(training_dir=TRAINING_DIR, entity_descr_output=ENTITY_DESCR, trainlimit=1, devlimit=10)
trainer.train_model(training_dir=TRAINING_DIR, entity_descr_output=ENTITY_DESCR, trainlimit=1000, devlimit=200)
print()
# STEP 7: apply the EL algorithm on the dev dataset