From 056b08c0df19a3a079ce658455dd71dfaecc729e Mon Sep 17 00:00:00 2001 From: Matthew Honnibal Date: Thu, 5 Oct 2017 18:27:10 +0200 Subject: [PATCH] Delete obsolete nn_text_class example --- examples/nn_text_class.py | 281 -------------------------------------- 1 file changed, 281 deletions(-) delete mode 100644 examples/nn_text_class.py diff --git a/examples/nn_text_class.py b/examples/nn_text_class.py deleted file mode 100644 index 7b4a2fd57..000000000 --- a/examples/nn_text_class.py +++ /dev/null @@ -1,281 +0,0 @@ -"""This script expects something like a binary sentiment data set, such as - that available here: `http://www.cs.cornell.edu/people/pabo/movie-review-data/` - -It expects a directory structure like: `data_dir/train/{pos|neg}` - and `data_dir/test/{pos|neg}`. Put (say) 90% of the files in the former - and the remainder in the latter. -""" - -from __future__ import unicode_literals -from __future__ import print_function -from __future__ import division - -from collections import defaultdict -from pathlib import Path -import numpy -import plac - -import spacy.en - - -def read_data(nlp, data_dir): - for subdir, label in (('pos', 1), ('neg', 0)): - for filename in (data_dir / subdir).iterdir(): - text = filename.open().read() - doc = nlp(text) - if len(doc) >= 1: - yield doc, label - - -def partition(examples, split_size): - examples = list(examples) - numpy.random.shuffle(examples) - n_docs = len(examples) - split = int(n_docs * split_size) - return examples[:split], examples[split:] - - -def minibatch(data, bs=24): - for i in range(0, len(data), bs): - yield data[i:i+bs] - - -class Extractor(object): - def __init__(self, nlp, vector_length, dropout=0.3): - self.nlp = nlp - self.dropout = dropout - self.vector = numpy.zeros((vector_length, )) - - def doc2bow(self, doc, dropout=None): - if dropout is None: - dropout = self.dropout - bow = defaultdict(int) - all_words = defaultdict(int) - for word in doc: - if numpy.random.random() >= dropout and not word.is_punct: - bow[word.lower] += 1 - all_words[word.lower] += 1 - if sum(bow.values()) >= 1: - return bow - else: - return all_words - - def bow2vec(self, bow, E): - self.vector.fill(0) - n = 0 - for orth_id, freq in bow.items(): - self.vector += self.nlp.vocab[self.nlp.vocab.strings[orth_id]].vector * freq - # Apply the fine-tuning we've learned - if orth_id < E.shape[0]: - self.vector += E[orth_id] * freq - n += freq - return self.vector / n - - -class NeuralNetwork(object): - def __init__(self, depth, width, n_classes, n_vocab, extracter, optimizer): - self.depth = depth - self.width = width - self.n_classes = n_classes - self.weights = Params.random(depth, width, width, n_classes, n_vocab) - self.doc2bow = extracter.doc2bow - self.bow2vec = extracter.bow2vec - self.optimizer = optimizer - self._gradient = Params.zero(depth, width, width, n_classes, n_vocab) - self._activity = numpy.zeros((depth, width)) - - def train(self, batch): - activity = self._activity - gradient = self._gradient - activity.fill(0) - gradient.data.fill(0) - loss = 0 - word_freqs = defaultdict(int) - for doc, label in batch: - word_ids = self.doc2bow(doc) - vector = self.bow2vec(word_ids, self.weights.E) - self.forward(activity, vector) - loss += self.backprop(vector, gradient, activity, word_ids, label) - for w, freq in word_ids.items(): - word_freqs[w] += freq - self.optimizer(self.weights, gradient, len(batch), word_freqs) - return loss - - def predict(self, doc): - actv = self._activity - actv.fill(0) - W = self.weights.W - b = self.weights.b - E = self.weights.E - - vector = self.bow2vec(self.doc2bow(doc, dropout=0.0), E) - self.forward(actv, vector) - return numpy.argmax(softmax(actv[-1], W[-1], b[-1])) - - def forward(self, actv, in_): - actv.fill(0) - W = self.weights.W; b = self.weights.b - actv[0] = relu(in_, W[0], b[0]) - for i in range(1, self.depth): - actv[i] = relu(actv[i-1], W[i], b[i]) - - def backprop(self, input_vector, gradient, activity, ids, label): - W = self.weights.W - b = self.weights.b - - target = numpy.zeros(self.n_classes) - target[label] = 1.0 - pred = softmax(activity[-1], W[-1], b[-1]) - delta = pred - target - - for i in range(self.depth, 0, -1): - gradient.b[i] += delta - gradient.W[i] += numpy.outer(delta, activity[i-1]) - delta = d_relu(activity[i-1]) * W[i].T.dot(delta) - - gradient.b[0] += delta - gradient.W[0] += numpy.outer(delta, input_vector) - tuning = W[0].T.dot(delta).reshape((self.width,)) / len(ids) - for w, freq in ids.items(): - if w < gradient.E.shape[0]: - gradient.E[w] += tuning * freq - return -sum(target * numpy.log(pred)) - - -def softmax(actvn, W, b): - w = W.dot(actvn) + b - ew = numpy.exp(w - max(w)) - return (ew / sum(ew)).ravel() - - -def relu(actvn, W, b): - x = W.dot(actvn) + b - return x * (x > 0) - - -def d_relu(x): - return x > 0 - - -class Adagrad(object): - def __init__(self, lr, rho): - self.eps = 1e-3 - # initial learning rate - self.learning_rate = lr - self.rho = rho - # stores sum of squared gradients - #self.h = numpy.zeros(self.dim) - #self._curr_rate = numpy.zeros(self.h.shape) - self.h = None - self._curr_rate = None - - def __call__(self, weights, gradient, batch_size, word_freqs): - if self.h is None: - self.h = numpy.zeros(gradient.data.shape) - self._curr_rate = numpy.zeros(gradient.data.shape) - self.L2_penalty(gradient, weights, word_freqs) - update = self.rescale(gradient.data / batch_size) - weights.data -= update - - def rescale(self, gradient): - if self.h is None: - self.h = numpy.zeros(gradient.data.shape) - self._curr_rate = numpy.zeros(gradient.data.shape) - self._curr_rate.fill(0) - self.h += gradient ** 2 - self._curr_rate = self.learning_rate / (numpy.sqrt(self.h) + self.eps) - return self._curr_rate * gradient - - def L2_penalty(self, gradient, weights, word_freqs): - # L2 Regularization - for i in range(len(weights.W)): - gradient.W[i] += weights.W[i] * self.rho - gradient.b[i] += weights.b[i] * self.rho - for w, freq in word_freqs.items(): - if w < gradient.E.shape[0]: - gradient.E[w] += weights.E[w] * self.rho - - -class Params(object): - @classmethod - def zero(cls, depth, n_embed, n_hidden, n_labels, n_vocab): - return cls(depth, n_embed, n_hidden, n_labels, n_vocab, lambda x: numpy.zeros((x,))) - - @classmethod - def random(cls, depth, nE, nH, nL, nV): - return cls(depth, nE, nH, nL, nV, lambda x: (numpy.random.rand(x) * 2 - 1) * 0.08) - - def __init__(self, depth, n_embed, n_hidden, n_labels, n_vocab, initializer): - nE = n_embed; nH = n_hidden; nL = n_labels; nV = n_vocab - n_weights = sum([ - (nE * nH) + nH, - (nH * nH + nH) * depth, - (nH * nL) + nL, - (nV * nE) - ]) - self.data = initializer(n_weights) - self.W = [] - self.b = [] - i = self._add_layer(0, nE, nH) - for _ in range(1, depth): - i = self._add_layer(i, nH, nH) - i = self._add_layer(i, nL, nH) - self.E = self.data[i : i + (nV * nE)].reshape((nV, nE)) - self.E.fill(0) - - def _add_layer(self, start, x, y): - end = start + (x * y) - self.W.append(self.data[start : end].reshape((x, y))) - self.b.append(self.data[end : end + x].reshape((x, ))) - return end + x - - -@plac.annotations( - data_dir=("Data directory", "positional", None, Path), - n_iter=("Number of iterations (epochs)", "option", "i", int), - width=("Size of hidden layers", "option", "H", int), - depth=("Depth", "option", "d", int), - dropout=("Drop-out rate", "option", "r", float), - rho=("Regularization penalty", "option", "p", float), - eta=("Learning rate", "option", "e", float), - batch_size=("Batch size", "option", "b", int), - vocab_size=("Number of words to fine-tune", "option", "w", int), -) -def main(data_dir, depth=3, width=300, n_iter=5, vocab_size=40000, - batch_size=24, dropout=0.3, rho=1e-5, eta=0.005): - n_classes = 2 - print("Loading") - nlp = spacy.en.English(parser=False) - train_data, dev_data = partition(read_data(nlp, data_dir / 'train'), 0.8) - print("Begin training") - extracter = Extractor(nlp, width, dropout=0.3) - optimizer = Adagrad(eta, rho) - model = NeuralNetwork(depth, width, n_classes, vocab_size, extracter, optimizer) - prev_best = 0 - best_weights = None - for epoch in range(n_iter): - numpy.random.shuffle(train_data) - train_loss = 0.0 - for batch in minibatch(train_data, bs=batch_size): - train_loss += model.train(batch) - n_correct = sum(model.predict(x) == y for x, y in dev_data) - print(epoch, train_loss, n_correct / len(dev_data)) - if n_correct >= prev_best: - best_weights = model.weights.data.copy() - prev_best = n_correct - - model.weights.data = best_weights - print("Evaluating") - eval_data = list(read_data(nlp, data_dir / 'test')) - n_correct = sum(model.predict(x) == y for x, y in eval_data) - print(n_correct / len(eval_data)) - - - -if __name__ == '__main__': - #import cProfile - #import pstats - #cProfile.runctx("main(Path('data/aclImdb'))", globals(), locals(), "Profile.prof") - #s = pstats.Stats("Profile.prof") - #s.strip_dirs().sort_stats("time").print_stats(100) - plac.call(main)