diff --git a/bin/parser/train.py b/bin/parser/train.py index 574797ba5..24484f7cf 100755 --- a/bin/parser/train.py +++ b/bin/parser/train.py @@ -66,8 +66,8 @@ def score_model(scorer, nlp, raw_text, annot_tuples, verbose=False): def train(Language, train_data, dev_data, model_dir, tagger_cfg, parser_cfg, entity_cfg, n_iter=15, seed=0, gold_preproc=False, n_sents=0, corruption_level=0): - print("Itn.\tP.Loss\tUAS\tNER F.\tTag %\tToken %") - format_str = '{:d}\t{:d}\t{uas:.3f}\t{ents_f:.3f}\t{tags_acc:.3f}\t{token_acc:.3f}' + print("Itn.\tP.Loss\tN feats\tUAS\tNER F.\tTag %\tToken %") + format_str = '{:d}\t{:d}\t{:d}\t{uas:.3f}\t{ents_f:.3f}\t{tags_acc:.3f}\t{token_acc:.3f}' with Language.train(model_dir, train_data, tagger_cfg, parser_cfg, entity_cfg) as trainer: loss = 0 @@ -76,7 +76,8 @@ def train(Language, train_data, dev_data, model_dir, tagger_cfg, parser_cfg, ent for doc, gold in epoch: trainer.update(doc, gold) dev_scores = trainer.evaluate(dev_data, gold_preproc=gold_preproc) - print(format_str.format(itn, loss, **dev_scores.scores)) + print(format_str.format(itn, loss, + trainer.nlp.parser.model.nr_active_feat, **dev_scores.scores)) def evaluate(Language, gold_tuples, model_dir, gold_preproc=False, verbose=False, @@ -160,6 +161,7 @@ def main(language, train_loc, dev_loc, model_dir, n_sents=0, n_iter=15, out_loc= if not eval_only: gold_train = list(read_json_file(train_loc)) gold_dev = list(read_json_file(dev_loc)) + gold_train = gold_train[:n_sents] train(lang, gold_train, gold_dev, model_dir, tagger_cfg, parser_cfg, entity_cfg, n_sents=n_sents, gold_preproc=gold_preproc, corruption_level=corruption_level, n_iter=n_iter)