Support .gz and .tar.gz files in spacy init-model

This commit is contained in:
Matthew Honnibal 2018-03-21 14:33:23 +01:00
parent 49fbe2dfee
commit 044397e269
1 changed files with 30 additions and 13 deletions

View File

@ -8,6 +8,8 @@ import numpy
from ast import literal_eval
from pathlib import Path
from preshed.counter import PreshCounter
import tarfile
import gzip
from ..compat import fix_text
from ..vectors import Vectors
@ -25,17 +27,17 @@ from ..util import prints, ensure_path, get_lang_class
prune_vectors=("optional: number of vectors to prune to",
"option", "V", int)
)
def init_model(lang, output_dir, freqs_loc, clusters_loc=None, vectors_loc=None, prune_vectors=-1):
def init_model(lang, output_dir, freqs_loc=None, clusters_loc=None, vectors_loc=None, prune_vectors=-1):
"""
Create a new model from raw data, like word frequencies, Brown clusters
and word vectors.
"""
if not freqs_loc.exists():
if freqs_loc is not None and not freqs_loc.exists():
prints(freqs_loc, title="Can't find words frequencies file", exits=1)
clusters_loc = ensure_path(clusters_loc)
vectors_loc = ensure_path(vectors_loc)
probs, oov_prob = read_freqs(freqs_loc)
probs, oov_prob = read_freqs(freqs_loc) if freqs_loc is not None else ({}, -20)
vectors_data, vector_keys = read_vectors(vectors_loc) if vectors_loc else (None, None)
clusters = read_clusters(clusters_loc) if clusters_loc else {}
@ -46,6 +48,16 @@ def init_model(lang, output_dir, freqs_loc, clusters_loc=None, vectors_loc=None,
nlp.to_disk(output_dir)
return nlp
def open_file(loc):
'''Handle .gz, .tar.gz or unzipped files'''
loc = ensure_path(loc)
if tarfile.is_tarfile(str(loc)):
return tarfile.open(str(loc), 'r:gz')
elif loc.parts[-1].endswith('gz'):
return (line.decode('utf8') for line in gzip.open(str(loc), 'r'))
else:
return loc.open('r', encoding='utf8')
def create_model(lang, probs, oov_prob, clusters, vectors_data, vector_keys, prune_vectors):
print("Creating model...")
@ -68,6 +80,11 @@ def create_model(lang, probs, oov_prob, clusters, vectors_data, vector_keys, pru
lexeme.cluster = 0
lex_added += 1
nlp.vocab.cfg.update({'oov_prob': oov_prob})
for word in vector_keys:
if word not in nlp.vocab:
lexeme = nlp.vocab[word]
lexeme.is_oov = False
lex_added += 1
if len(vectors_data):
nlp.vocab.vectors = Vectors(data=vectors_data, keys=vector_keys)
@ -81,16 +98,16 @@ def create_model(lang, probs, oov_prob, clusters, vectors_data, vector_keys, pru
def read_vectors(vectors_loc):
print("Reading vectors...")
with vectors_loc.open() as f:
shape = tuple(int(size) for size in f.readline().split())
vectors_data = numpy.zeros(shape=shape, dtype='f')
vectors_keys = []
for i, line in enumerate(tqdm(f)):
pieces = line.split()
word = pieces.pop(0)
vectors_data[i] = numpy.array([float(val_str) for val_str in pieces], dtype='f')
vectors_keys.append(word)
print("Reading vectors from %s" % vectors_loc)
f = open_file(vectors_loc)
shape = tuple(int(size) for size in next(f).split())
vectors_data = numpy.zeros(shape=shape, dtype='f')
vectors_keys = []
for i, line in enumerate(tqdm(f)):
pieces = line.split()
word = pieces.pop(0)
vectors_data[i] = numpy.asarray(pieces, dtype='f')
vectors_keys.append(word)
return vectors_data, vectors_keys