Update docs [ci skip]

This commit is contained in:
Ines Montani 2020-09-18 15:13:13 +02:00
parent a127fa475e
commit 0406200a1e
1 changed files with 25 additions and 18 deletions

View File

@ -123,20 +123,11 @@ $ python -m spacy train config.cfg --paths.train ./corpus/train.spacy
### corpora {#config-corpora tag="section"} ### corpora {#config-corpora tag="section"}
This section defines a dictionary mapping of string keys to `Callable`
functions. Each callable takes an `nlp` object and yields
[`Example`](/api/example) objects. By default, the two keys `train` and `dev`
are specified and each refer to a [`Corpus`](/api/top-level#Corpus). When
pretraining, an additional pretrain section is added that defaults to a
[`JsonlReader`](/api/top-level#JsonlReader).
These subsections can be expanded with additional subsections, each referring to
a callback of type `Callable[[Language], Iterator[Example]]`:
> #### Example > #### Example
> >
> ```ini > ```ini
> [corpora] > [corpora]
>
> [corpora.train] > [corpora.train]
> @readers = "spacy.Corpus.v1" > @readers = "spacy.Corpus.v1"
> path = ${paths:train} > path = ${paths:train}
@ -148,28 +139,44 @@ a callback of type `Callable[[Language], Iterator[Example]]`:
> [corpora.pretrain] > [corpora.pretrain]
> @readers = "spacy.JsonlReader.v1" > @readers = "spacy.JsonlReader.v1"
> path = ${paths.raw} > path = ${paths.raw}
> min_length = 5
> max_length = 500
> >
> [corpora.mydata] > [corpora.my_custom_data]
> @readers = "my_reader.v1" > @readers = "my_custom_reader.v1"
> shuffle = true
> ``` > ```
Alternatively, the `corpora` block could refer to one function with return type This section defines a **dictionary** mapping of string keys to functions. Each
`Dict[str, Callable[[Language], Iterator[Example]]]`: function takes an `nlp` object and yields [`Example`](/api/example) objects. By
default, the two keys `train` and `dev` are specified and each refer to a
[`Corpus`](/api/top-level#Corpus). When pretraining, an additional `pretrain`
section is added that defaults to a [`JsonlReader`](/api/top-level#JsonlReader).
You can also register custom functions that return a callable.
| Name | Description |
| ---------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `train` | Training data corpus, typically used in `[training]` block. ~~Callable[[Language], Iterator[Example]]~~ |
| `dev` | Development data corpus, typically used in `[training]` block. ~~Callable[[Language], Iterator[Example]]~~ |
| `pretrain` | Raw text for [pretraining](/usage/embeddings-transformers#pretraining), typically used in `[pretraining]` block (if available). ~~Callable[[Language], Iterator[Example]]~~ |
| ... | Any custom or alternative corpora. ~~Callable[[Language], Iterator[Example]]~~ |
Alternatively, the `[corpora]` block can refer to **one function** that returns
a dictionary keyed by the corpus names. This can be useful if you want to load a
single corpus once and then divide it up into `train` and `dev` partitions.
> #### Example > #### Example
> >
> ```ini > ```ini
> [corpora] > [corpora]
> @readers = "my_dict_reader.v1" > @readers = "my_custom_reader.v1"
> train_path = ${paths:train} > train_path = ${paths:train}
> dev_path = ${paths:dev} > dev_path = ${paths:dev}
> shuffle = true > shuffle = true
> >
> ``` > ```
| Name | Description |
| --------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `corpora` | A dictionary keyed by string names, mapped to corpus functions that receive the current `nlp` object and return an iterator of [`Example`](/api/example) objects. ~~Dict[str, Callable[[Language], Iterator[Example]]]~~ |
### training {#config-training tag="section"} ### training {#config-training tag="section"}
This section defines settings and controls for the training and evaluation This section defines settings and controls for the training and evaluation