mirror of https://github.com/explosion/spaCy.git
Add spaCy IRL to landing [ci skip]
This commit is contained in:
parent
68900066e0
commit
037ffdfd3f
|
@ -75,14 +75,28 @@ export const LandingBannerGrid = ({ children }) => (
|
|||
</Grid>
|
||||
)
|
||||
|
||||
export const LandingBanner = ({ title, label, to, button, small, background, color, children }) => {
|
||||
export const LandingBanner = ({
|
||||
title,
|
||||
label,
|
||||
to,
|
||||
button,
|
||||
small,
|
||||
background,
|
||||
backgroundImage,
|
||||
color,
|
||||
children,
|
||||
}) => {
|
||||
const contentClassNames = classNames(classes.bannerContent, {
|
||||
[classes.bannerContentSmall]: small,
|
||||
})
|
||||
const textClassNames = classNames(classes.bannerText, {
|
||||
[classes.bannerTextSmall]: small,
|
||||
})
|
||||
const style = { '--color-theme': background, '--color-back': color }
|
||||
const style = {
|
||||
'--color-theme': background,
|
||||
'--color-back': color,
|
||||
backgroundImage: backgroundImage ? `url(${backgroundImage})` : null,
|
||||
}
|
||||
const Heading = small ? H2 : H1
|
||||
return (
|
||||
<div className={classes.banner} style={style}>
|
||||
|
@ -113,7 +127,7 @@ export const LandingBanner = ({ title, label, to, button, small, background, col
|
|||
|
||||
export const LandingBannerButton = ({ to, small, children }) => (
|
||||
<div className={classes.bannerButton}>
|
||||
<Button to={to} variant="tertiary" large={!small}>
|
||||
<Button to={to} variant="tertiary" large={!small} className={classes.bannerButtonElement}>
|
||||
{children}
|
||||
</Button>
|
||||
</div>
|
||||
|
|
Binary file not shown.
After Width: | Height: | Size: 75 KiB |
|
@ -73,6 +73,7 @@
|
|||
color: var(--color-back)
|
||||
padding: 5rem
|
||||
margin-bottom: var(--spacing-md)
|
||||
background-size: cover
|
||||
|
||||
.banner-content
|
||||
margin-bottom: 0
|
||||
|
@ -100,7 +101,7 @@
|
|||
|
||||
.banner-text-small p
|
||||
font-size: 1.35rem
|
||||
margin-bottom: 1rem
|
||||
margin-bottom: 1.5rem
|
||||
|
||||
@include breakpoint(min, md)
|
||||
.banner-content
|
||||
|
@ -134,6 +135,9 @@
|
|||
margin-bottom: var(--spacing-sm)
|
||||
text-align: right
|
||||
|
||||
.banner-button-element
|
||||
background: var(--color-theme)
|
||||
|
||||
.logos
|
||||
text-align: center
|
||||
padding-bottom: 1rem
|
||||
|
|
|
@ -19,6 +19,7 @@ import { H2 } from '../components/typography'
|
|||
import { Ul, Li } from '../components/list'
|
||||
import Button from '../components/button'
|
||||
import Link from '../components/link'
|
||||
import irlBackground from '../images/spacy-irl.jpg'
|
||||
|
||||
import BenchmarksChoi from 'usage/_benchmarks-choi.md'
|
||||
|
||||
|
@ -151,19 +152,21 @@ const Landing = ({ data }) => {
|
|||
|
||||
<LandingBannerGrid>
|
||||
<LandingBanner
|
||||
title="BERT-style language model pretraining and more"
|
||||
label="New in v2.1"
|
||||
to="/usage/v2-1"
|
||||
button="Read more"
|
||||
title="spaCy IRL 2019: Two days of NLP"
|
||||
label="Join us in Berlin"
|
||||
to="https://irl.spacy.io/2019"
|
||||
button="Get tickets"
|
||||
background="#ffc194"
|
||||
backgroundImage={irlBackground}
|
||||
color="#1a1e23"
|
||||
small
|
||||
>
|
||||
Learn more from small training corpora by initializing your models with{' '}
|
||||
<strong>knowledge from raw text</strong>. The new pretrain command teaches
|
||||
spaCy's CNN model to predict words based on their context, producing
|
||||
representations of words in contexts. If you've seen Google's BERT system or
|
||||
fast.ai's ULMFiT, spaCy's pretraining is similar – but much more efficient. It's
|
||||
still experimental, but users are already reporting good results, so give it a
|
||||
try!
|
||||
We're pleased to invite the spaCy community and other folks working on Natural
|
||||
Language Processing to Berlin this summer for a small and intimate event{' '}
|
||||
<strong>July 5-6, 2019</strong>. The event includes a hands-on training day for
|
||||
teams using spaCy in production, followed by a one-track conference. We booked a
|
||||
beautiful venue, hand-picked an awesome lineup of speakers and scheduled plenty
|
||||
of social time to get to know each other and exchange ideas.
|
||||
</LandingBanner>
|
||||
|
||||
<LandingBanner
|
||||
|
@ -191,23 +194,17 @@ const Landing = ({ data }) => {
|
|||
<LandingLogos title="Featured on" logos={data.logosPublications} />
|
||||
|
||||
<LandingBanner
|
||||
title="Convolutional neural network models"
|
||||
label="New in v2.0"
|
||||
button="Download models"
|
||||
to="/models"
|
||||
title="BERT-style language model pretraining"
|
||||
label="New in v2.1"
|
||||
to="/usage/v2-1"
|
||||
button="Read more"
|
||||
>
|
||||
spaCy v2.0 features new neural models for <strong>tagging</strong>,{' '}
|
||||
<strong>parsing</strong> and <strong>entity recognition</strong>. The models have
|
||||
been designed and implemented from scratch specifically for spaCy, to give you an
|
||||
unmatched balance of speed, size and accuracy. A novel bloom embedding strategy with
|
||||
subword features is used to support huge vocabularies in tiny tables. Convolutional
|
||||
layers with residual connections, layer normalization and maxout non-linearity are
|
||||
used, giving much better efficiency than the standard BiLSTM solution. Finally, the
|
||||
parser and NER use an imitation learning objective to deliver accuracy in-line with
|
||||
the latest research systems, even when evaluated from raw text. With these
|
||||
innovations, spaCy v2.0's models are <strong>10× smaller</strong>,{' '}
|
||||
<strong>20% more accurate</strong>, and
|
||||
<strong>even cheaper to run</strong> than the previous generation.
|
||||
Learn more from small training corpora by initializing your models with{' '}
|
||||
<strong>knowledge from raw text</strong>. The new pretrain command teaches spaCy's
|
||||
CNN model to predict words based on their context, producing representations of
|
||||
words in contexts. If you've seen Google's BERT system or fast.ai's ULMFiT, spaCy's
|
||||
pretraining is similar – but much more efficient. It's still experimental, but users
|
||||
are already reporting good results, so give it a try!
|
||||
</LandingBanner>
|
||||
|
||||
<LandingGrid cols={2}>
|
||||
|
|
Loading…
Reference in New Issue