diff --git a/.github/workflows/tests.yml b/.github/workflows/tests.yml index 4099b31e2..976b1f4f2 100644 --- a/.github/workflows/tests.yml +++ b/.github/workflows/tests.yml @@ -58,10 +58,8 @@ jobs: fail-fast: true matrix: os: [ubuntu-latest, windows-latest, macos-latest] - python_version: ["3.11"] + python_version: ["3.11", "3.12.0-rc.2"] include: - - os: ubuntu-20.04 - python_version: "3.6" - os: windows-latest python_version: "3.7" - os: macos-latest @@ -95,7 +93,7 @@ jobs: - name: Run mypy run: | python -m mypy spacy - if: matrix.python_version != '3.6' + if: matrix.python_version != '3.7' - name: Delete source directory and .egg-info run: | diff --git a/README.md b/README.md index 9a8f90749..b2ffa4639 100644 --- a/README.md +++ b/README.md @@ -16,7 +16,7 @@ model packaging, deployment and workflow management. spaCy is commercial open-source software, released under the [MIT license](https://github.com/explosion/spaCy/blob/master/LICENSE). -💫 **Version 3.6 out now!** +💫 **Version 3.7 out now!** [Check out the release notes here.](https://github.com/explosion/spaCy/releases) [![tests](https://github.com/explosion/spaCy/actions/workflows/tests.yml/badge.svg)](https://github.com/explosion/spaCy/actions/workflows/tests.yml) @@ -108,7 +108,7 @@ For detailed installation instructions, see the - **Operating system**: macOS / OS X · Linux · Windows (Cygwin, MinGW, Visual Studio) -- **Python version**: Python 3.6+ (only 64 bit) +- **Python version**: Python 3.7+ (only 64 bit) - **Package managers**: [pip] · [conda] (via `conda-forge`) [pip]: https://pypi.org/project/spacy/ diff --git a/build-constraints.txt b/build-constraints.txt index c1e82f1b0..b1cf596ca 100644 --- a/build-constraints.txt +++ b/build-constraints.txt @@ -1,9 +1,6 @@ -# build version constraints for use with wheelwright + multibuild -numpy==1.15.0; python_version<='3.7' and platform_machine!='aarch64' -numpy==1.19.2; python_version<='3.7' and platform_machine=='aarch64' +# build version constraints for use with wheelwright +numpy==1.15.0; python_version=='3.7' and platform_machine!='aarch64' +numpy==1.19.2; python_version=='3.7' and platform_machine=='aarch64' numpy==1.17.3; python_version=='3.8' and platform_machine!='aarch64' numpy==1.19.2; python_version=='3.8' and platform_machine=='aarch64' -numpy==1.19.3; python_version=='3.9' -numpy==1.21.3; python_version=='3.10' -numpy==1.23.2; python_version=='3.11' -numpy; python_version>='3.12' +numpy>=1.25.0; python_version>='3.9' diff --git a/extra/DEVELOPER_DOCS/Listeners.md b/extra/DEVELOPER_DOCS/Listeners.md index 3a71082e0..72c036880 100644 --- a/extra/DEVELOPER_DOCS/Listeners.md +++ b/extra/DEVELOPER_DOCS/Listeners.md @@ -1,14 +1,17 @@ # Listeners -1. [Overview](#1-overview) -2. [Initialization](#2-initialization) - - [A. Linking listeners to the embedding component](#2a-linking-listeners-to-the-embedding-component) - - [B. Shape inference](#2b-shape-inference) -3. [Internal communication](#3-internal-communication) - - [A. During prediction](#3a-during-prediction) - - [B. During training](#3b-during-training) - - [C. Frozen components](#3c-frozen-components) -4. [Replacing listener with standalone](#4-replacing-listener-with-standalone) +- [1. Overview](#1-overview) +- [2. Initialization](#2-initialization) + - [2A. Linking listeners to the embedding component](#2a-linking-listeners-to-the-embedding-component) + - [2B. Shape inference](#2b-shape-inference) +- [3. Internal communication](#3-internal-communication) + - [3A. During prediction](#3a-during-prediction) + - [3B. During training](#3b-during-training) + - [Training with multiple listeners](#training-with-multiple-listeners) + - [3C. Frozen components](#3c-frozen-components) + - [The Tok2Vec or Transformer is frozen](#the-tok2vec-or-transformer-is-frozen) + - [The upstream component is frozen](#the-upstream-component-is-frozen) +- [4. Replacing listener with standalone](#4-replacing-listener-with-standalone) ## 1. Overview @@ -62,7 +65,7 @@ of this `find_listener()` method will specifically identify sublayers of a model If it's a Transformer-based pipeline, a [`transformer` component](https://github.com/explosion/spacy-transformers/blob/master/spacy_transformers/pipeline_component.py) -has a similar implementation but its `find_listener()` function will specifically look for `TransformerListener` +has a similar implementation but its `find_listener()` function will specifically look for `TransformerListener` sublayers of downstream components. ### 2B. Shape inference @@ -154,7 +157,7 @@ as a tagger or a parser. This used to be impossible before 3.1, but has become s embedding component in the [`annotating_components`](https://spacy.io/usage/training#annotating-components) list of the config. This works like any other "annotating component" because it relies on the `Doc` attributes. -However, if the `Tok2Vec` or `Transformer` is frozen, and not present in `annotating_components`, and a related +However, if the `Tok2Vec` or `Transformer` is frozen, and not present in `annotating_components`, and a related listener isn't frozen, then a `W086` warning is shown and further training of the pipeline will likely end with `E954`. #### The upstream component is frozen @@ -216,5 +219,17 @@ new_model = tok2vec_model.attrs["replace_listener"](new_model) ``` The new config and model are then properly stored on the `nlp` object. -Note that this functionality (running the replacement for a transformer listener) was broken prior to +Note that this functionality (running the replacement for a transformer listener) was broken prior to `spacy-transformers` 1.0.5. + +In spaCy 3.7, `Language.replace_listeners` was updated to pass the following additional arguments to the `replace_listener` callback: +the listener to be replaced and the `tok2vec`/`transformer` pipe from which the new model was copied. To maintain backwards-compatiblity, +the method only passes these extra arguments for callbacks that support them: + +``` +def replace_listener_pre_37(copied_tok2vec_model): + ... + +def replace_listener_post_37(copied_tok2vec_model, replaced_listener, tok2vec_pipe): + ... +``` diff --git a/pyproject.toml b/pyproject.toml index dcb5cf10d..336c0793c 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -5,8 +5,9 @@ requires = [ "cymem>=2.0.2,<2.1.0", "preshed>=3.0.2,<3.1.0", "murmurhash>=0.28.0,<1.1.0", - "thinc>=8.1.8,<8.2.0", - "numpy>=1.15.0", + "thinc>=8.1.8,<8.3.0", + "numpy>=1.15.0; python_version < '3.9'", + "numpy>=1.25.0; python_version >= '3.9'", ] build-backend = "setuptools.build_meta" diff --git a/requirements.txt b/requirements.txt index 4bc7d3820..3050624f9 100644 --- a/requirements.txt +++ b/requirements.txt @@ -3,17 +3,18 @@ spacy-legacy>=3.0.11,<3.1.0 spacy-loggers>=1.0.0,<2.0.0 cymem>=2.0.2,<2.1.0 preshed>=3.0.2,<3.1.0 -thinc>=8.1.8,<8.2.0 +thinc>=8.1.8,<8.3.0 ml_datasets>=0.2.0,<0.3.0 murmurhash>=0.28.0,<1.1.0 wasabi>=0.9.1,<1.2.0 srsly>=2.4.3,<3.0.0 catalogue>=2.0.6,<2.1.0 typer>=0.3.0,<0.10.0 -pathy>=0.10.0 smart-open>=5.2.1,<7.0.0 +weasel>=0.1.0,<0.4.0 # Third party dependencies -numpy>=1.15.0 +numpy>=1.15.0; python_version < "3.9" +numpy>=1.19.0; python_version >= "3.9" requests>=2.13.0,<3.0.0 tqdm>=4.38.0,<5.0.0 pydantic>=1.7.4,!=1.8,!=1.8.1,<3.0.0 @@ -31,12 +32,11 @@ pytest-timeout>=1.3.0,<2.0.0 mock>=2.0.0,<3.0.0 flake8>=3.8.0,<6.0.0 hypothesis>=3.27.0,<7.0.0 -mypy>=0.990,<1.1.0; platform_machine != "aarch64" and python_version >= "3.7" -types-dataclasses>=0.1.3; python_version < "3.7" +mypy>=1.5.0,<1.6.0; platform_machine != "aarch64" and python_version >= "3.8" types-mock>=0.1.1 types-setuptools>=57.0.0 types-requests types-setuptools>=57.0.0 black==22.3.0 -cython-lint>=0.15.0; python_version >= "3.7" +cython-lint>=0.15.0 isort>=5.0,<6.0 diff --git a/setup.cfg b/setup.cfg index 4aaf0271b..ab9e39e0c 100644 --- a/setup.cfg +++ b/setup.cfg @@ -17,7 +17,6 @@ classifiers = Operating System :: Microsoft :: Windows Programming Language :: Cython Programming Language :: Python :: 3 - Programming Language :: Python :: 3.6 Programming Language :: Python :: 3.7 Programming Language :: Python :: 3.8 Programming Language :: Python :: 3.9 @@ -31,15 +30,18 @@ project_urls = [options] zip_safe = false include_package_data = true -python_requires = >=3.6 +python_requires = >=3.7 +# NOTE: This section is superseded by pyproject.toml and will be removed in +# spaCy v4 setup_requires = cython>=0.25,<3.0 - numpy>=1.15.0 + numpy>=1.15.0; python_version < "3.9" + numpy>=1.19.0; python_version >= "3.9" # We also need our Cython packages here to compile against cymem>=2.0.2,<2.1.0 preshed>=3.0.2,<3.1.0 murmurhash>=0.28.0,<1.1.0 - thinc>=8.1.8,<8.2.0 + thinc>=8.1.8,<8.3.0 install_requires = # Our libraries spacy-legacy>=3.0.11,<3.1.0 @@ -47,16 +49,17 @@ install_requires = murmurhash>=0.28.0,<1.1.0 cymem>=2.0.2,<2.1.0 preshed>=3.0.2,<3.1.0 - thinc>=8.1.8,<8.2.0 + thinc>=8.1.8,<8.3.0 wasabi>=0.9.1,<1.2.0 srsly>=2.4.3,<3.0.0 catalogue>=2.0.6,<2.1.0 + weasel>=0.1.0,<0.4.0 # Third-party dependencies typer>=0.3.0,<0.10.0 - pathy>=0.10.0 smart-open>=5.2.1,<7.0.0 tqdm>=4.38.0,<5.0.0 - numpy>=1.15.0 + numpy>=1.15.0; python_version < "3.9" + numpy>=1.19.0; python_version >= "3.9" requests>=2.13.0,<3.0.0 pydantic>=1.7.4,!=1.8,!=1.8.1,<3.0.0 jinja2 @@ -74,9 +77,7 @@ console_scripts = lookups = spacy_lookups_data>=1.0.3,<1.1.0 transformers = - spacy_transformers>=1.1.2,<1.3.0 -ray = - spacy_ray>=0.1.0,<1.0.0 + spacy_transformers>=1.1.2,<1.4.0 cuda = cupy>=5.0.0b4,<13.0.0 cuda80 = diff --git a/setup.py b/setup.py index 3b6fae37b..33178662d 100755 --- a/setup.py +++ b/setup.py @@ -78,6 +78,7 @@ COMPILER_DIRECTIVES = { "language_level": -3, "embedsignature": True, "annotation_typing": False, + "profile": sys.version_info < (3, 12), } # Files to copy into the package that are otherwise not included COPY_FILES = { diff --git a/spacy/about.py b/spacy/about.py index 0f8eee0ff..0e718400b 100644 --- a/spacy/about.py +++ b/spacy/about.py @@ -1,7 +1,5 @@ # fmt: off __title__ = "spacy" -__version__ = "3.6.1" +__version__ = "3.7.1" __download_url__ = "https://github.com/explosion/spacy-models/releases/download" __compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json" -__projects__ = "https://github.com/explosion/projects" -__projects_branch__ = "v3" diff --git a/spacy/attrs.pyx b/spacy/attrs.pyx index 97b5d5e36..363dd094d 100644 --- a/spacy/attrs.pyx +++ b/spacy/attrs.pyx @@ -1,3 +1,4 @@ +# cython: profile=False from .errors import Errors IOB_STRINGS = ("", "I", "O", "B") diff --git a/spacy/cli/__init__.py b/spacy/cli/__init__.py index 60fe718c7..f3c6dbfed 100644 --- a/spacy/cli/__init__.py +++ b/spacy/cli/__init__.py @@ -22,13 +22,6 @@ from .init_pipeline import init_pipeline_cli # noqa: F401 from .package import package # noqa: F401 from .pretrain import pretrain # noqa: F401 from .profile import profile # noqa: F401 -from .project.assets import project_assets # noqa: F401 -from .project.clone import project_clone # noqa: F401 -from .project.document import project_document # noqa: F401 -from .project.dvc import project_update_dvc # noqa: F401 -from .project.pull import project_pull # noqa: F401 -from .project.push import project_push # noqa: F401 -from .project.run import project_run # noqa: F401 from .train import train_cli # noqa: F401 from .validate import validate # noqa: F401 diff --git a/spacy/cli/_util.py b/spacy/cli/_util.py index eff897316..fa41e6a08 100644 --- a/spacy/cli/_util.py +++ b/spacy/cli/_util.py @@ -25,10 +25,11 @@ from thinc.api import Config, ConfigValidationError, require_gpu from thinc.util import gpu_is_available from typer.main import get_command from wasabi import Printer, msg +from weasel import app as project_cli from .. import about from ..compat import Literal -from ..schemas import ProjectConfigSchema, validate +from ..schemas import validate from ..util import ( ENV_VARS, SimpleFrozenDict, @@ -40,15 +41,10 @@ from ..util import ( run_command, ) -if TYPE_CHECKING: - from pathy import FluidPath # noqa: F401 - - SDIST_SUFFIX = ".tar.gz" WHEEL_SUFFIX = "-py3-none-any.whl" PROJECT_FILE = "project.yml" -PROJECT_LOCK = "project.lock" COMMAND = "python -m spacy" NAME = "spacy" HELP = """spaCy Command-line Interface @@ -74,11 +70,10 @@ Opt = typer.Option app = typer.Typer(name=NAME, help=HELP) benchmark_cli = typer.Typer(name="benchmark", help=BENCHMARK_HELP, no_args_is_help=True) -project_cli = typer.Typer(name="project", help=PROJECT_HELP, no_args_is_help=True) debug_cli = typer.Typer(name="debug", help=DEBUG_HELP, no_args_is_help=True) init_cli = typer.Typer(name="init", help=INIT_HELP, no_args_is_help=True) -app.add_typer(project_cli) +app.add_typer(project_cli, name="project", help=PROJECT_HELP, no_args_is_help=True) app.add_typer(debug_cli) app.add_typer(benchmark_cli) app.add_typer(init_cli) @@ -153,148 +148,6 @@ def _parse_override(value: Any) -> Any: return str(value) -def load_project_config( - path: Path, interpolate: bool = True, overrides: Dict[str, Any] = SimpleFrozenDict() -) -> Dict[str, Any]: - """Load the project.yml file from a directory and validate it. Also make - sure that all directories defined in the config exist. - - path (Path): The path to the project directory. - interpolate (bool): Whether to substitute project variables. - overrides (Dict[str, Any]): Optional config overrides. - RETURNS (Dict[str, Any]): The loaded project.yml. - """ - config_path = path / PROJECT_FILE - if not config_path.exists(): - msg.fail(f"Can't find {PROJECT_FILE}", config_path, exits=1) - invalid_err = f"Invalid {PROJECT_FILE}. Double-check that the YAML is correct." - try: - config = srsly.read_yaml(config_path) - except ValueError as e: - msg.fail(invalid_err, e, exits=1) - errors = validate(ProjectConfigSchema, config) - if errors: - msg.fail(invalid_err) - print("\n".join(errors)) - sys.exit(1) - validate_project_version(config) - validate_project_commands(config) - if interpolate: - err = f"{PROJECT_FILE} validation error" - with show_validation_error(title=err, hint_fill=False): - config = substitute_project_variables(config, overrides) - # Make sure directories defined in config exist - for subdir in config.get("directories", []): - dir_path = path / subdir - if not dir_path.exists(): - dir_path.mkdir(parents=True) - return config - - -def substitute_project_variables( - config: Dict[str, Any], - overrides: Dict[str, Any] = SimpleFrozenDict(), - key: str = "vars", - env_key: str = "env", -) -> Dict[str, Any]: - """Interpolate variables in the project file using the config system. - - config (Dict[str, Any]): The project config. - overrides (Dict[str, Any]): Optional config overrides. - key (str): Key containing variables in project config. - env_key (str): Key containing environment variable mapping in project config. - RETURNS (Dict[str, Any]): The interpolated project config. - """ - config.setdefault(key, {}) - config.setdefault(env_key, {}) - # Substitute references to env vars with their values - for config_var, env_var in config[env_key].items(): - config[env_key][config_var] = _parse_override(os.environ.get(env_var, "")) - # Need to put variables in the top scope again so we can have a top-level - # section "project" (otherwise, a list of commands in the top scope wouldn't) - # be allowed by Thinc's config system - cfg = Config({"project": config, key: config[key], env_key: config[env_key]}) - cfg = Config().from_str(cfg.to_str(), overrides=overrides) - interpolated = cfg.interpolate() - return dict(interpolated["project"]) - - -def validate_project_version(config: Dict[str, Any]) -> None: - """If the project defines a compatible spaCy version range, chec that it's - compatible with the current version of spaCy. - - config (Dict[str, Any]): The loaded config. - """ - spacy_version = config.get("spacy_version", None) - if spacy_version and not is_compatible_version(about.__version__, spacy_version): - err = ( - f"The {PROJECT_FILE} specifies a spaCy version range ({spacy_version}) " - f"that's not compatible with the version of spaCy you're running " - f"({about.__version__}). You can edit version requirement in the " - f"{PROJECT_FILE} to load it, but the project may not run as expected." - ) - msg.fail(err, exits=1) - - -def validate_project_commands(config: Dict[str, Any]) -> None: - """Check that project commands and workflows are valid, don't contain - duplicates, don't clash and only refer to commands that exist. - - config (Dict[str, Any]): The loaded config. - """ - command_names = [cmd["name"] for cmd in config.get("commands", [])] - workflows = config.get("workflows", {}) - duplicates = set([cmd for cmd in command_names if command_names.count(cmd) > 1]) - if duplicates: - err = f"Duplicate commands defined in {PROJECT_FILE}: {', '.join(duplicates)}" - msg.fail(err, exits=1) - for workflow_name, workflow_steps in workflows.items(): - if workflow_name in command_names: - err = f"Can't use workflow name '{workflow_name}': name already exists as a command" - msg.fail(err, exits=1) - for step in workflow_steps: - if step not in command_names: - msg.fail( - f"Unknown command specified in workflow '{workflow_name}': {step}", - f"Workflows can only refer to commands defined in the 'commands' " - f"section of the {PROJECT_FILE}.", - exits=1, - ) - - -def get_hash(data, exclude: Iterable[str] = tuple()) -> str: - """Get the hash for a JSON-serializable object. - - data: The data to hash. - exclude (Iterable[str]): Top-level keys to exclude if data is a dict. - RETURNS (str): The hash. - """ - if isinstance(data, dict): - data = {k: v for k, v in data.items() if k not in exclude} - data_str = srsly.json_dumps(data, sort_keys=True).encode("utf8") - return hashlib.md5(data_str).hexdigest() - - -def get_checksum(path: Union[Path, str]) -> str: - """Get the checksum for a file or directory given its file path. If a - directory path is provided, this uses all files in that directory. - - path (Union[Path, str]): The file or directory path. - RETURNS (str): The checksum. - """ - path = Path(path) - if not (path.is_file() or path.is_dir()): - msg.fail(f"Can't get checksum for {path}: not a file or directory", exits=1) - if path.is_file(): - return hashlib.md5(Path(path).read_bytes()).hexdigest() - else: - # TODO: this is currently pretty slow - dir_checksum = hashlib.md5() - for sub_file in sorted(fp for fp in path.rglob("*") if fp.is_file()): - dir_checksum.update(sub_file.read_bytes()) - return dir_checksum.hexdigest() - - @contextmanager def show_validation_error( file_path: Optional[Union[str, Path]] = None, @@ -352,166 +205,10 @@ def import_code(code_path: Optional[Union[Path, str]]) -> None: msg.fail(f"Couldn't load Python code: {code_path}", e, exits=1) -def upload_file(src: Path, dest: Union[str, "FluidPath"]) -> None: - """Upload a file. - - src (Path): The source path. - url (str): The destination URL to upload to. - """ - import smart_open - - # Create parent directories for local paths - if isinstance(dest, Path): - if not dest.parent.exists(): - dest.parent.mkdir(parents=True) - - dest = str(dest) - with smart_open.open(dest, mode="wb") as output_file: - with src.open(mode="rb") as input_file: - output_file.write(input_file.read()) - - -def download_file( - src: Union[str, "FluidPath"], dest: Path, *, force: bool = False -) -> None: - """Download a file using smart_open. - - url (str): The URL of the file. - dest (Path): The destination path. - force (bool): Whether to force download even if file exists. - If False, the download will be skipped. - """ - import smart_open - - if dest.exists() and not force: - return None - src = str(src) - with smart_open.open(src, mode="rb", compression="disable") as input_file: - with dest.open(mode="wb") as output_file: - shutil.copyfileobj(input_file, output_file) - - -def ensure_pathy(path): - """Temporary helper to prevent importing Pathy globally (which can cause - slow and annoying Google Cloud warning).""" - from pathy import Pathy # noqa: F811 - - return Pathy.fluid(path) - - -def git_checkout( - repo: str, subpath: str, dest: Path, *, branch: str = "master", sparse: bool = False -): - git_version = get_git_version() - if dest.exists(): - msg.fail("Destination of checkout must not exist", exits=1) - if not dest.parent.exists(): - msg.fail("Parent of destination of checkout must exist", exits=1) - if sparse and git_version >= (2, 22): - return git_sparse_checkout(repo, subpath, dest, branch) - elif sparse: - # Only show warnings if the user explicitly wants sparse checkout but - # the Git version doesn't support it - err_old = ( - f"You're running an old version of Git (v{git_version[0]}.{git_version[1]}) " - f"that doesn't fully support sparse checkout yet." - ) - err_unk = "You're running an unknown version of Git, so sparse checkout has been disabled." - msg.warn( - f"{err_unk if git_version == (0, 0) else err_old} " - f"This means that more files than necessary may be downloaded " - f"temporarily. To only download the files needed, make sure " - f"you're using Git v2.22 or above." - ) - with make_tempdir() as tmp_dir: - cmd = f"git -C {tmp_dir} clone {repo} . -b {branch}" - run_command(cmd, capture=True) - # We need Path(name) to make sure we also support subdirectories - try: - source_path = tmp_dir / Path(subpath) - if not is_subpath_of(tmp_dir, source_path): - err = f"'{subpath}' is a path outside of the cloned repository." - msg.fail(err, repo, exits=1) - shutil.copytree(str(source_path), str(dest)) - except FileNotFoundError: - err = f"Can't clone {subpath}. Make sure the directory exists in the repo (branch '{branch}')" - msg.fail(err, repo, exits=1) - - -def git_sparse_checkout(repo, subpath, dest, branch): - # We're using Git, partial clone and sparse checkout to - # only clone the files we need - # This ends up being RIDICULOUS. omg. - # So, every tutorial and SO post talks about 'sparse checkout'...But they - # go and *clone* the whole repo. Worthless. And cloning part of a repo - # turns out to be completely broken. The only way to specify a "path" is.. - # a path *on the server*? The contents of which, specifies the paths. Wat. - # Obviously this is hopelessly broken and insecure, because you can query - # arbitrary paths on the server! So nobody enables this. - # What we have to do is disable *all* files. We could then just checkout - # the path, and it'd "work", but be hopelessly slow...Because it goes and - # transfers every missing object one-by-one. So the final piece is that we - # need to use some weird git internals to fetch the missings in bulk, and - # *that* we can do by path. - # We're using Git and sparse checkout to only clone the files we need - with make_tempdir() as tmp_dir: - # This is the "clone, but don't download anything" part. - cmd = ( - f"git clone {repo} {tmp_dir} --no-checkout --depth 1 " - f"-b {branch} --filter=blob:none" - ) - run_command(cmd) - # Now we need to find the missing filenames for the subpath we want. - # Looking for this 'rev-list' command in the git --help? Hah. - cmd = f"git -C {tmp_dir} rev-list --objects --all --missing=print -- {subpath}" - ret = run_command(cmd, capture=True) - git_repo = _http_to_git(repo) - # Now pass those missings into another bit of git internals - missings = " ".join([x[1:] for x in ret.stdout.split() if x.startswith("?")]) - if not missings: - err = ( - f"Could not find any relevant files for '{subpath}'. " - f"Did you specify a correct and complete path within repo '{repo}' " - f"and branch {branch}?" - ) - msg.fail(err, exits=1) - cmd = f"git -C {tmp_dir} fetch-pack {git_repo} {missings}" - run_command(cmd, capture=True) - # And finally, we can checkout our subpath - cmd = f"git -C {tmp_dir} checkout {branch} {subpath}" - run_command(cmd, capture=True) - - # Get a subdirectory of the cloned path, if appropriate - source_path = tmp_dir / Path(subpath) - if not is_subpath_of(tmp_dir, source_path): - err = f"'{subpath}' is a path outside of the cloned repository." - msg.fail(err, repo, exits=1) - - shutil.move(str(source_path), str(dest)) - - -def git_repo_branch_exists(repo: str, branch: str) -> bool: - """Uses 'git ls-remote' to check if a repository and branch exists - - repo (str): URL to get repo. - branch (str): Branch on repo to check. - RETURNS (bool): True if repo:branch exists. - """ - get_git_version() - cmd = f"git ls-remote {repo} {branch}" - # We might be tempted to use `--exit-code` with `git ls-remote`, but - # `run_command` handles the `returncode` for us, so we'll rely on - # the fact that stdout returns '' if the requested branch doesn't exist - ret = run_command(cmd, capture=True) - exists = ret.stdout != "" - return exists - - def get_git_version( error: str = "Could not run 'git'. Make sure it's installed and the executable is available.", ) -> Tuple[int, int]: """Get the version of git and raise an error if calling 'git --version' fails. - error (str): The error message to show. RETURNS (Tuple[int, int]): The version as a (major, minor) tuple. Returns (0, 0) if the version couldn't be determined. @@ -527,30 +224,6 @@ def get_git_version( return int(version[0]), int(version[1]) -def _http_to_git(repo: str) -> str: - if repo.startswith("http://"): - repo = repo.replace(r"http://", r"https://") - if repo.startswith(r"https://"): - repo = repo.replace("https://", "git@").replace("/", ":", 1) - if repo.endswith("/"): - repo = repo[:-1] - repo = f"{repo}.git" - return repo - - -def is_subpath_of(parent, child): - """ - Check whether `child` is a path contained within `parent`. - """ - # Based on https://stackoverflow.com/a/37095733 . - - # In Python 3.9, the `Path.is_relative_to()` method will supplant this, so - # we can stop using crusty old os.path functions. - parent_realpath = os.path.realpath(parent) - child_realpath = os.path.realpath(child) - return os.path.commonpath([parent_realpath, child_realpath]) == parent_realpath - - @overload def string_to_list(value: str, intify: Literal[False] = ...) -> List[str]: ... diff --git a/spacy/cli/apply.py b/spacy/cli/apply.py index 8c4b4c8bf..ffd810506 100644 --- a/spacy/cli/apply.py +++ b/spacy/cli/apply.py @@ -133,7 +133,9 @@ def apply( if len(text_files) > 0: streams.append(_stream_texts(text_files)) datagen = cast(DocOrStrStream, chain(*streams)) - for doc in tqdm.tqdm(nlp.pipe(datagen, batch_size=batch_size, n_process=n_process)): + for doc in tqdm.tqdm( + nlp.pipe(datagen, batch_size=batch_size, n_process=n_process), disable=None + ): docbin.add(doc) if output_file.suffix == "": output_file = output_file.with_suffix(".spacy") diff --git a/spacy/cli/benchmark_speed.py b/spacy/cli/benchmark_speed.py index a683d1591..c7fd771c3 100644 --- a/spacy/cli/benchmark_speed.py +++ b/spacy/cli/benchmark_speed.py @@ -89,7 +89,7 @@ class Quartiles: def annotate( nlp: Language, docs: List[Doc], batch_size: Optional[int] ) -> numpy.ndarray: - docs = nlp.pipe(tqdm(docs, unit="doc"), batch_size=batch_size) + docs = nlp.pipe(tqdm(docs, unit="doc", disable=None), batch_size=batch_size) wps = [] while True: with time_context() as elapsed: diff --git a/spacy/cli/evaluate.py b/spacy/cli/evaluate.py index 6235b658d..2276ca6b0 100644 --- a/spacy/cli/evaluate.py +++ b/spacy/cli/evaluate.py @@ -28,6 +28,7 @@ def evaluate_cli( displacy_path: Optional[Path] = Opt(None, "--displacy-path", "-dp", help="Directory to output rendered parses as HTML", exists=True, file_okay=False), displacy_limit: int = Opt(25, "--displacy-limit", "-dl", help="Limit of parses to render as HTML"), per_component: bool = Opt(False, "--per-component", "-P", help="Return scores per component, only applicable when an output JSON file is specified."), + spans_key: str = Opt("sc", "--spans-key", "-sk", help="Spans key to use when evaluating Doc.spans"), # fmt: on ): """ @@ -53,6 +54,7 @@ def evaluate_cli( displacy_limit=displacy_limit, per_component=per_component, silent=False, + spans_key=spans_key, ) diff --git a/spacy/cli/profile.py b/spacy/cli/profile.py index e1f720327..e5b8f1193 100644 --- a/spacy/cli/profile.py +++ b/spacy/cli/profile.py @@ -71,7 +71,7 @@ def profile(model: str, inputs: Optional[Path] = None, n_texts: int = 10000) -> def parse_texts(nlp: Language, texts: Sequence[str]) -> None: - for doc in nlp.pipe(tqdm.tqdm(texts), batch_size=16): + for doc in nlp.pipe(tqdm.tqdm(texts, disable=None), batch_size=16): pass diff --git a/spacy/cli/project/__init__.py b/spacy/cli/project/__init__.py deleted file mode 100644 index e69de29bb..000000000 diff --git a/spacy/cli/project/assets.py b/spacy/cli/project/assets.py deleted file mode 100644 index aa2705986..000000000 --- a/spacy/cli/project/assets.py +++ /dev/null @@ -1,217 +0,0 @@ -import os -import re -import shutil -from pathlib import Path -from typing import Any, Dict, Optional - -import requests -import typer -from wasabi import msg - -from ...util import ensure_path, working_dir -from .._util import ( - PROJECT_FILE, - Arg, - Opt, - SimpleFrozenDict, - download_file, - get_checksum, - get_git_version, - git_checkout, - load_project_config, - parse_config_overrides, - project_cli, -) - -# Whether assets are extra if `extra` is not set. -EXTRA_DEFAULT = False - - -@project_cli.command( - "assets", - context_settings={"allow_extra_args": True, "ignore_unknown_options": True}, -) -def project_assets_cli( - # fmt: off - ctx: typer.Context, # This is only used to read additional arguments - project_dir: Path = Arg(Path.cwd(), help="Path to cloned project. Defaults to current working directory.", exists=True, file_okay=False), - sparse_checkout: bool = Opt(False, "--sparse", "-S", help="Use sparse checkout for assets provided via Git, to only check out and clone the files needed. Requires Git v22.2+."), - extra: bool = Opt(False, "--extra", "-e", help="Download all assets, including those marked as 'extra'.") - # fmt: on -): - """Fetch project assets like datasets and pretrained weights. Assets are - defined in the "assets" section of the project.yml. If a checksum is - provided in the project.yml, the file is only downloaded if no local file - with the same checksum exists. - - DOCS: https://spacy.io/api/cli#project-assets - """ - overrides = parse_config_overrides(ctx.args) - project_assets( - project_dir, - overrides=overrides, - sparse_checkout=sparse_checkout, - extra=extra, - ) - - -def project_assets( - project_dir: Path, - *, - overrides: Dict[str, Any] = SimpleFrozenDict(), - sparse_checkout: bool = False, - extra: bool = False, -) -> None: - """Fetch assets for a project using DVC if possible. - - project_dir (Path): Path to project directory. - sparse_checkout (bool): Use sparse checkout for assets provided via Git, to only check out and clone the files - needed. - extra (bool): Whether to download all assets, including those marked as 'extra'. - """ - project_path = ensure_path(project_dir) - config = load_project_config(project_path, overrides=overrides) - assets = [ - asset - for asset in config.get("assets", []) - if extra or not asset.get("extra", EXTRA_DEFAULT) - ] - if not assets: - msg.warn( - f"No assets specified in {PROJECT_FILE} (if assets are marked as extra, download them with --extra)", - exits=0, - ) - msg.info(f"Fetching {len(assets)} asset(s)") - - for asset in assets: - dest = (project_dir / asset["dest"]).resolve() - checksum = asset.get("checksum") - if "git" in asset: - git_err = ( - f"Cloning spaCy project templates requires Git and the 'git' command. " - f"Make sure it's installed and that the executable is available." - ) - get_git_version(error=git_err) - if dest.exists(): - # If there's already a file, check for checksum - if checksum and checksum == get_checksum(dest): - msg.good( - f"Skipping download with matching checksum: {asset['dest']}" - ) - continue - else: - if dest.is_dir(): - shutil.rmtree(dest) - else: - dest.unlink() - if "repo" not in asset["git"] or asset["git"]["repo"] is None: - msg.fail( - "A git asset must include 'repo', the repository address.", exits=1 - ) - if "path" not in asset["git"] or asset["git"]["path"] is None: - msg.fail( - "A git asset must include 'path' - use \"\" to get the entire repository.", - exits=1, - ) - git_checkout( - asset["git"]["repo"], - asset["git"]["path"], - dest, - branch=asset["git"].get("branch"), - sparse=sparse_checkout, - ) - msg.good(f"Downloaded asset {dest}") - else: - url = asset.get("url") - if not url: - # project.yml defines asset without URL that the user has to place - check_private_asset(dest, checksum) - continue - fetch_asset(project_path, url, dest, checksum) - - -def check_private_asset(dest: Path, checksum: Optional[str] = None) -> None: - """Check and validate assets without a URL (private assets that the user - has to provide themselves) and give feedback about the checksum. - - dest (Path): Destination path of the asset. - checksum (Optional[str]): Optional checksum of the expected file. - """ - if not Path(dest).exists(): - err = f"No URL provided for asset. You need to add this file yourself: {dest}" - msg.warn(err) - else: - if not checksum: - msg.good(f"Asset already exists: {dest}") - elif checksum == get_checksum(dest): - msg.good(f"Asset exists with matching checksum: {dest}") - else: - msg.fail(f"Asset available but with incorrect checksum: {dest}") - - -def fetch_asset( - project_path: Path, url: str, dest: Path, checksum: Optional[str] = None -) -> None: - """Fetch an asset from a given URL or path. If a checksum is provided and a - local file exists, it's only re-downloaded if the checksum doesn't match. - - project_path (Path): Path to project directory. - url (str): URL or path to asset. - checksum (Optional[str]): Optional expected checksum of local file. - RETURNS (Optional[Path]): The path to the fetched asset or None if fetching - the asset failed. - """ - dest_path = (project_path / dest).resolve() - if dest_path.exists(): - # If there's already a file, check for checksum - if checksum: - if checksum == get_checksum(dest_path): - msg.good(f"Skipping download with matching checksum: {dest}") - return - else: - # If there's not a checksum, make sure the file is a possibly valid size - if os.path.getsize(dest_path) == 0: - msg.warn(f"Asset exists but with size of 0 bytes, deleting: {dest}") - os.remove(dest_path) - # We might as well support the user here and create parent directories in - # case the asset dir isn't listed as a dir to create in the project.yml - if not dest_path.parent.exists(): - dest_path.parent.mkdir(parents=True) - with working_dir(project_path): - url = convert_asset_url(url) - try: - download_file(url, dest_path) - msg.good(f"Downloaded asset {dest}") - except requests.exceptions.RequestException as e: - if Path(url).exists() and Path(url).is_file(): - # If it's a local file, copy to destination - shutil.copy(url, str(dest_path)) - msg.good(f"Copied local asset {dest}") - else: - msg.fail(f"Download failed: {dest}", e) - if checksum and checksum != get_checksum(dest_path): - msg.fail(f"Checksum doesn't match value defined in {PROJECT_FILE}: {dest}") - - -def convert_asset_url(url: str) -> str: - """Check and convert the asset URL if needed. - - url (str): The asset URL. - RETURNS (str): The converted URL. - """ - # If the asset URL is a regular GitHub URL it's likely a mistake - if ( - re.match(r"(http(s?)):\/\/github.com", url) - and "releases/download" not in url - and "/raw/" not in url - ): - converted = url.replace("github.com", "raw.githubusercontent.com") - converted = re.sub(r"/(tree|blob)/", "/", converted) - msg.warn( - "Downloading from a regular GitHub URL. This will only download " - "the source of the page, not the actual file. Converting the URL " - "to a raw URL.", - converted, - ) - return converted - return url diff --git a/spacy/cli/project/clone.py b/spacy/cli/project/clone.py deleted file mode 100644 index 2ee27c92a..000000000 --- a/spacy/cli/project/clone.py +++ /dev/null @@ -1,124 +0,0 @@ -import re -import subprocess -from pathlib import Path -from typing import Optional - -from wasabi import msg - -from ... import about -from ...util import ensure_path -from .._util import ( - COMMAND, - PROJECT_FILE, - Arg, - Opt, - get_git_version, - git_checkout, - git_repo_branch_exists, - project_cli, -) - -DEFAULT_REPO = about.__projects__ -DEFAULT_PROJECTS_BRANCH = about.__projects_branch__ -DEFAULT_BRANCHES = ["main", "master"] - - -@project_cli.command("clone") -def project_clone_cli( - # fmt: off - name: str = Arg(..., help="The name of the template to clone"), - dest: Optional[Path] = Arg(None, help="Where to clone the project. Defaults to current working directory", exists=False), - repo: str = Opt(DEFAULT_REPO, "--repo", "-r", help="The repository to clone from"), - branch: Optional[str] = Opt(None, "--branch", "-b", help=f"The branch to clone from. If not provided, will attempt {', '.join(DEFAULT_BRANCHES)}"), - sparse_checkout: bool = Opt(False, "--sparse", "-S", help="Use sparse Git checkout to only check out and clone the files needed. Requires Git v22.2+.") - # fmt: on -): - """Clone a project template from a repository. Calls into "git" and will - only download the files from the given subdirectory. The GitHub repo - defaults to the official spaCy template repo, but can be customized - (including using a private repo). - - DOCS: https://spacy.io/api/cli#project-clone - """ - if dest is None: - dest = Path.cwd() / Path(name).parts[-1] - if repo == DEFAULT_REPO and branch is None: - branch = DEFAULT_PROJECTS_BRANCH - - if branch is None: - for default_branch in DEFAULT_BRANCHES: - if git_repo_branch_exists(repo, default_branch): - branch = default_branch - break - if branch is None: - default_branches_msg = ", ".join(f"'{b}'" for b in DEFAULT_BRANCHES) - msg.fail( - "No branch provided and attempted default " - f"branches {default_branches_msg} do not exist.", - exits=1, - ) - else: - if not git_repo_branch_exists(repo, branch): - msg.fail(f"repo: {repo} (branch: {branch}) does not exist.", exits=1) - assert isinstance(branch, str) - project_clone(name, dest, repo=repo, branch=branch, sparse_checkout=sparse_checkout) - - -def project_clone( - name: str, - dest: Path, - *, - repo: str = about.__projects__, - branch: str = about.__projects_branch__, - sparse_checkout: bool = False, -) -> None: - """Clone a project template from a repository. - - name (str): Name of subdirectory to clone. - dest (Path): Destination path of cloned project. - repo (str): URL of Git repo containing project templates. - branch (str): The branch to clone from - """ - dest = ensure_path(dest) - check_clone(name, dest, repo) - project_dir = dest.resolve() - repo_name = re.sub(r"(http(s?)):\/\/github.com/", "", repo) - try: - git_checkout(repo, name, dest, branch=branch, sparse=sparse_checkout) - except subprocess.CalledProcessError: - err = f"Could not clone '{name}' from repo '{repo_name}' (branch '{branch}')" - msg.fail(err, exits=1) - msg.good(f"Cloned '{name}' from '{repo_name}' (branch '{branch}')", project_dir) - if not (project_dir / PROJECT_FILE).exists(): - msg.warn(f"No {PROJECT_FILE} found in directory") - else: - msg.good(f"Your project is now ready!") - print(f"To fetch the assets, run:\n{COMMAND} project assets {dest}") - - -def check_clone(name: str, dest: Path, repo: str) -> None: - """Check and validate that the destination path can be used to clone. Will - check that Git is available and that the destination path is suitable. - - name (str): Name of the directory to clone from the repo. - dest (Path): Local destination of cloned directory. - repo (str): URL of the repo to clone from. - """ - git_err = ( - f"Cloning spaCy project templates requires Git and the 'git' command. " - f"To clone a project without Git, copy the files from the '{name}' " - f"directory in the {repo} to {dest} manually." - ) - get_git_version(error=git_err) - if not dest: - msg.fail(f"Not a valid directory to clone project: {dest}", exits=1) - if dest.exists(): - # Directory already exists (not allowed, clone needs to create it) - msg.fail(f"Can't clone project, directory already exists: {dest}", exits=1) - if not dest.parent.exists(): - # We're not creating parents, parent dir should exist - msg.fail( - f"Can't clone project, parent directory doesn't exist: {dest.parent}. " - f"Create the necessary folder(s) first before continuing.", - exits=1, - ) diff --git a/spacy/cli/project/document.py b/spacy/cli/project/document.py deleted file mode 100644 index 80107d27a..000000000 --- a/spacy/cli/project/document.py +++ /dev/null @@ -1,115 +0,0 @@ -from pathlib import Path - -from wasabi import MarkdownRenderer, msg - -from ...util import working_dir -from .._util import PROJECT_FILE, Arg, Opt, load_project_config, project_cli - -DOCS_URL = "https://spacy.io" -INTRO_PROJECT = f"""The [`{PROJECT_FILE}`]({PROJECT_FILE}) defines the data assets required by the -project, as well as the available commands and workflows. For details, see the -[spaCy projects documentation]({DOCS_URL}/usage/projects).""" -INTRO_COMMANDS = f"""The following commands are defined by the project. They -can be executed using [`spacy project run [name]`]({DOCS_URL}/api/cli#project-run). -Commands are only re-run if their inputs have changed.""" -INTRO_WORKFLOWS = f"""The following workflows are defined by the project. They -can be executed using [`spacy project run [name]`]({DOCS_URL}/api/cli#project-run) -and will run the specified commands in order. Commands are only re-run if their -inputs have changed.""" -INTRO_ASSETS = f"""The following assets are defined by the project. They can -be fetched by running [`spacy project assets`]({DOCS_URL}/api/cli#project-assets) -in the project directory.""" -# These markers are added to the Markdown and can be used to update the file in -# place if it already exists. Only the auto-generated part will be replaced. -MARKER_START = "" -MARKER_END = "" -# If this marker is used in an existing README, it's ignored and not replaced -MARKER_IGNORE = "" - - -@project_cli.command("document") -def project_document_cli( - # fmt: off - project_dir: Path = Arg(Path.cwd(), help="Path to cloned project. Defaults to current working directory.", exists=True, file_okay=False), - output_file: Path = Opt("-", "--output", "-o", help="Path to output Markdown file for output. Defaults to - for standard output"), - no_emoji: bool = Opt(False, "--no-emoji", "-NE", help="Don't use emoji") - # fmt: on -): - """ - Auto-generate a README.md for a project. If the content is saved to a file, - hidden markers are added so you can add custom content before or after the - auto-generated section and only the auto-generated docs will be replaced - when you re-run the command. - - DOCS: https://spacy.io/api/cli#project-document - """ - project_document(project_dir, output_file, no_emoji=no_emoji) - - -def project_document( - project_dir: Path, output_file: Path, *, no_emoji: bool = False -) -> None: - is_stdout = str(output_file) == "-" - config = load_project_config(project_dir) - md = MarkdownRenderer(no_emoji=no_emoji) - md.add(MARKER_START) - title = config.get("title") - description = config.get("description") - md.add(md.title(1, f"spaCy Project{f': {title}' if title else ''}", "🪐")) - if description: - md.add(description) - md.add(md.title(2, PROJECT_FILE, "📋")) - md.add(INTRO_PROJECT) - # Commands - cmds = config.get("commands", []) - data = [(md.code(cmd["name"]), cmd.get("help", "")) for cmd in cmds] - if data: - md.add(md.title(3, "Commands", "⏯")) - md.add(INTRO_COMMANDS) - md.add(md.table(data, ["Command", "Description"])) - # Workflows - wfs = config.get("workflows", {}).items() - data = [(md.code(n), " → ".join(md.code(w) for w in stp)) for n, stp in wfs] - if data: - md.add(md.title(3, "Workflows", "⏭")) - md.add(INTRO_WORKFLOWS) - md.add(md.table(data, ["Workflow", "Steps"])) - # Assets - assets = config.get("assets", []) - data = [] - for a in assets: - source = "Git" if a.get("git") else "URL" if a.get("url") else "Local" - dest_path = a["dest"] - dest = md.code(dest_path) - if source == "Local": - # Only link assets if they're in the repo - with working_dir(project_dir) as p: - if (p / dest_path).exists(): - dest = md.link(dest, dest_path) - data.append((dest, source, a.get("description", ""))) - if data: - md.add(md.title(3, "Assets", "🗂")) - md.add(INTRO_ASSETS) - md.add(md.table(data, ["File", "Source", "Description"])) - md.add(MARKER_END) - # Output result - if is_stdout: - print(md.text) - else: - content = md.text - if output_file.exists(): - with output_file.open("r", encoding="utf8") as f: - existing = f.read() - if MARKER_IGNORE in existing: - msg.warn("Found ignore marker in existing file: skipping", output_file) - return - if MARKER_START in existing and MARKER_END in existing: - msg.info("Found existing file: only replacing auto-generated docs") - before = existing.split(MARKER_START)[0] - after = existing.split(MARKER_END)[1] - content = f"{before}{content}{after}" - else: - msg.warn("Replacing existing file") - with output_file.open("w", encoding="utf8") as f: - f.write(content) - msg.good("Saved project documentation", output_file) diff --git a/spacy/cli/project/dvc.py b/spacy/cli/project/dvc.py deleted file mode 100644 index 9ad55c433..000000000 --- a/spacy/cli/project/dvc.py +++ /dev/null @@ -1,220 +0,0 @@ -"""This module contains helpers and subcommands for integrating spaCy projects -with Data Version Controk (DVC). https://dvc.org""" -import subprocess -from pathlib import Path -from typing import Any, Dict, Iterable, List, Optional - -from wasabi import msg - -from ...util import ( - SimpleFrozenList, - join_command, - run_command, - split_command, - working_dir, -) -from .._util import ( - COMMAND, - NAME, - PROJECT_FILE, - Arg, - Opt, - get_hash, - load_project_config, - project_cli, -) - -DVC_CONFIG = "dvc.yaml" -DVC_DIR = ".dvc" -UPDATE_COMMAND = "dvc" -DVC_CONFIG_COMMENT = f"""# This file is auto-generated by spaCy based on your {PROJECT_FILE}. If you've -# edited your {PROJECT_FILE}, you can regenerate this file by running: -# {COMMAND} project {UPDATE_COMMAND}""" - - -@project_cli.command(UPDATE_COMMAND) -def project_update_dvc_cli( - # fmt: off - project_dir: Path = Arg(Path.cwd(), help="Location of project directory. Defaults to current working directory.", exists=True, file_okay=False), - workflow: Optional[str] = Arg(None, help=f"Name of workflow defined in {PROJECT_FILE}. Defaults to first workflow if not set."), - verbose: bool = Opt(False, "--verbose", "-V", help="Print more info"), - quiet: bool = Opt(False, "--quiet", "-q", help="Print less info"), - force: bool = Opt(False, "--force", "-F", help="Force update DVC config"), - # fmt: on -): - """Auto-generate Data Version Control (DVC) config. A DVC - project can only define one pipeline, so you need to specify one workflow - defined in the project.yml. If no workflow is specified, the first defined - workflow is used. The DVC config will only be updated if the project.yml - changed. - - DOCS: https://spacy.io/api/cli#project-dvc - """ - project_update_dvc(project_dir, workflow, verbose=verbose, quiet=quiet, force=force) - - -def project_update_dvc( - project_dir: Path, - workflow: Optional[str] = None, - *, - verbose: bool = False, - quiet: bool = False, - force: bool = False, -) -> None: - """Update the auto-generated Data Version Control (DVC) config file. A DVC - project can only define one pipeline, so you need to specify one workflow - defined in the project.yml. Will only update the file if the checksum changed. - - project_dir (Path): The project directory. - workflow (Optional[str]): Optional name of workflow defined in project.yml. - If not set, the first workflow will be used. - verbose (bool): Print more info. - quiet (bool): Print less info. - force (bool): Force update DVC config. - """ - config = load_project_config(project_dir) - updated = update_dvc_config( - project_dir, config, workflow, verbose=verbose, quiet=quiet, force=force - ) - help_msg = "To execute the workflow with DVC, run: dvc repro" - if updated: - msg.good(f"Updated DVC config from {PROJECT_FILE}", help_msg) - else: - msg.info(f"No changes found in {PROJECT_FILE}, no update needed", help_msg) - - -def update_dvc_config( - path: Path, - config: Dict[str, Any], - workflow: Optional[str] = None, - verbose: bool = False, - quiet: bool = False, - force: bool = False, -) -> bool: - """Re-run the DVC commands in dry mode and update dvc.yaml file in the - project directory. The file is auto-generated based on the config. The - first line of the auto-generated file specifies the hash of the config - dict, so if any of the config values change, the DVC config is regenerated. - - path (Path): The path to the project directory. - config (Dict[str, Any]): The loaded project.yml. - verbose (bool): Whether to print additional info (via DVC). - quiet (bool): Don't output anything (via DVC). - force (bool): Force update, even if hashes match. - RETURNS (bool): Whether the DVC config file was updated. - """ - ensure_dvc(path) - workflows = config.get("workflows", {}) - workflow_names = list(workflows.keys()) - check_workflows(workflow_names, workflow) - if not workflow: - workflow = workflow_names[0] - config_hash = get_hash(config) - path = path.resolve() - dvc_config_path = path / DVC_CONFIG - if dvc_config_path.exists(): - # Check if the file was generated using the current config, if not, redo - with dvc_config_path.open("r", encoding="utf8") as f: - ref_hash = f.readline().strip().replace("# ", "") - if ref_hash == config_hash and not force: - return False # Nothing has changed in project.yml, don't need to update - dvc_config_path.unlink() - dvc_commands = [] - config_commands = {cmd["name"]: cmd for cmd in config.get("commands", [])} - - # some flags that apply to every command - flags = [] - if verbose: - flags.append("--verbose") - if quiet: - flags.append("--quiet") - - for name in workflows[workflow]: - command = config_commands[name] - deps = command.get("deps", []) - outputs = command.get("outputs", []) - outputs_no_cache = command.get("outputs_no_cache", []) - if not deps and not outputs and not outputs_no_cache: - continue - # Default to the working dir as the project path since dvc.yaml is auto-generated - # and we don't want arbitrary paths in there - project_cmd = ["python", "-m", NAME, "project", "run", name] - deps_cmd = [c for cl in [["-d", p] for p in deps] for c in cl] - outputs_cmd = [c for cl in [["-o", p] for p in outputs] for c in cl] - outputs_nc_cmd = [c for cl in [["-O", p] for p in outputs_no_cache] for c in cl] - - dvc_cmd = ["run", *flags, "-n", name, "-w", str(path), "--no-exec"] - if command.get("no_skip"): - dvc_cmd.append("--always-changed") - full_cmd = [*dvc_cmd, *deps_cmd, *outputs_cmd, *outputs_nc_cmd, *project_cmd] - dvc_commands.append(join_command(full_cmd)) - - if not dvc_commands: - # If we don't check for this, then there will be an error when reading the - # config, since DVC wouldn't create it. - msg.fail( - "No usable commands for DVC found. This can happen if none of your " - "commands have dependencies or outputs.", - exits=1, - ) - - with working_dir(path): - for c in dvc_commands: - dvc_command = "dvc " + c - run_command(dvc_command) - with dvc_config_path.open("r+", encoding="utf8") as f: - content = f.read() - f.seek(0, 0) - f.write(f"# {config_hash}\n{DVC_CONFIG_COMMENT}\n{content}") - return True - - -def check_workflows(workflows: List[str], workflow: Optional[str] = None) -> None: - """Validate workflows provided in project.yml and check that a given - workflow can be used to generate a DVC config. - - workflows (List[str]): Names of the available workflows. - workflow (Optional[str]): The name of the workflow to convert. - """ - if not workflows: - msg.fail( - f"No workflows defined in {PROJECT_FILE}. To generate a DVC config, " - f"define at least one list of commands.", - exits=1, - ) - if workflow is not None and workflow not in workflows: - msg.fail( - f"Workflow '{workflow}' not defined in {PROJECT_FILE}. " - f"Available workflows: {', '.join(workflows)}", - exits=1, - ) - if not workflow: - msg.warn( - f"No workflow specified for DVC pipeline. Using the first workflow " - f"defined in {PROJECT_FILE}: '{workflows[0]}'" - ) - - -def ensure_dvc(project_dir: Path) -> None: - """Ensure that the "dvc" command is available and that the current project - directory is an initialized DVC project. - """ - try: - subprocess.run(["dvc", "--version"], stdout=subprocess.DEVNULL) - except Exception: - msg.fail( - "To use spaCy projects with DVC (Data Version Control), DVC needs " - "to be installed and the 'dvc' command needs to be available", - "You can install the Python package from pip (pip install dvc) or " - "conda (conda install -c conda-forge dvc). For more details, see the " - "documentation: https://dvc.org/doc/install", - exits=1, - ) - if not (project_dir / ".dvc").exists(): - msg.fail( - "Project not initialized as a DVC project", - "To initialize a DVC project, you can run 'dvc init' in the project " - "directory. For more details, see the documentation: " - "https://dvc.org/doc/command-reference/init", - exits=1, - ) diff --git a/spacy/cli/project/pull.py b/spacy/cli/project/pull.py deleted file mode 100644 index e9be74df7..000000000 --- a/spacy/cli/project/pull.py +++ /dev/null @@ -1,67 +0,0 @@ -from pathlib import Path - -from wasabi import msg - -from .._util import Arg, load_project_config, logger, project_cli -from .remote_storage import RemoteStorage, get_command_hash -from .run import update_lockfile - - -@project_cli.command("pull") -def project_pull_cli( - # fmt: off - remote: str = Arg("default", help="Name or path of remote storage"), - project_dir: Path = Arg(Path.cwd(), help="Location of project directory. Defaults to current working directory.", exists=True, file_okay=False), - # fmt: on -): - """Retrieve available precomputed outputs from a remote storage. - You can alias remotes in your project.yml by mapping them to storage paths. - A storage can be anything that the smart-open library can upload to, e.g. - AWS, Google Cloud Storage, SSH, local directories etc. - - DOCS: https://spacy.io/api/cli#project-pull - """ - for url, output_path in project_pull(project_dir, remote): - if url is not None: - msg.good(f"Pulled {output_path} from {url}") - - -def project_pull(project_dir: Path, remote: str, *, verbose: bool = False): - # TODO: We don't have tests for this :(. It would take a bit of mockery to - # set up. I guess see if it breaks first? - config = load_project_config(project_dir) - if remote in config.get("remotes", {}): - remote = config["remotes"][remote] - storage = RemoteStorage(project_dir, remote) - commands = list(config.get("commands", [])) - # We use a while loop here because we don't know how the commands - # will be ordered. A command might need dependencies from one that's later - # in the list. - while commands: - for i, cmd in enumerate(list(commands)): - logger.debug("CMD: %s.", cmd["name"]) - deps = [project_dir / dep for dep in cmd.get("deps", [])] - if all(dep.exists() for dep in deps): - cmd_hash = get_command_hash("", "", deps, cmd["script"]) - for output_path in cmd.get("outputs", []): - url = storage.pull(output_path, command_hash=cmd_hash) - logger.debug( - "URL: %s for %s with command hash %s", - url, - output_path, - cmd_hash, - ) - yield url, output_path - - out_locs = [project_dir / out for out in cmd.get("outputs", [])] - if all(loc.exists() for loc in out_locs): - update_lockfile(project_dir, cmd) - # We remove the command from the list here, and break, so that - # we iterate over the loop again. - commands.pop(i) - break - else: - logger.debug("Dependency missing. Skipping %s outputs.", cmd["name"]) - else: - # If we didn't break the for loop, break the while loop. - break diff --git a/spacy/cli/project/push.py b/spacy/cli/project/push.py deleted file mode 100644 index a7915e547..000000000 --- a/spacy/cli/project/push.py +++ /dev/null @@ -1,69 +0,0 @@ -from pathlib import Path - -from wasabi import msg - -from .._util import Arg, load_project_config, logger, project_cli -from .remote_storage import RemoteStorage, get_command_hash, get_content_hash - - -@project_cli.command("push") -def project_push_cli( - # fmt: off - remote: str = Arg("default", help="Name or path of remote storage"), - project_dir: Path = Arg(Path.cwd(), help="Location of project directory. Defaults to current working directory.", exists=True, file_okay=False), - # fmt: on -): - """Persist outputs to a remote storage. You can alias remotes in your - project.yml by mapping them to storage paths. A storage can be anything that - the smart-open library can upload to, e.g. AWS, Google Cloud Storage, SSH, - local directories etc. - - DOCS: https://spacy.io/api/cli#project-push - """ - for output_path, url in project_push(project_dir, remote): - if url is None: - msg.info(f"Skipping {output_path}") - else: - msg.good(f"Pushed {output_path} to {url}") - - -def project_push(project_dir: Path, remote: str): - """Persist outputs to a remote storage. You can alias remotes in your project.yml - by mapping them to storage paths. A storage can be anything that the smart-open - library can upload to, e.g. gcs, aws, ssh, local directories etc - """ - config = load_project_config(project_dir) - if remote in config.get("remotes", {}): - remote = config["remotes"][remote] - storage = RemoteStorage(project_dir, remote) - for cmd in config.get("commands", []): - logger.debug("CMD: %s", cmd["name"]) - deps = [project_dir / dep for dep in cmd.get("deps", [])] - if any(not dep.exists() for dep in deps): - logger.debug("Dependency missing. Skipping %s outputs", cmd["name"]) - continue - cmd_hash = get_command_hash( - "", "", [project_dir / dep for dep in cmd.get("deps", [])], cmd["script"] - ) - logger.debug("CMD_HASH: %s", cmd_hash) - for output_path in cmd.get("outputs", []): - output_loc = project_dir / output_path - if output_loc.exists() and _is_not_empty_dir(output_loc): - url = storage.push( - output_path, - command_hash=cmd_hash, - content_hash=get_content_hash(output_loc), - ) - logger.debug( - "URL: %s for output %s with cmd_hash %s", url, output_path, cmd_hash - ) - yield output_path, url - - -def _is_not_empty_dir(loc: Path): - if not loc.is_dir(): - return True - elif any(_is_not_empty_dir(child) for child in loc.iterdir()): - return True - else: - return False diff --git a/spacy/cli/project/remote_storage.py b/spacy/cli/project/remote_storage.py deleted file mode 100644 index 84235a90d..000000000 --- a/spacy/cli/project/remote_storage.py +++ /dev/null @@ -1,212 +0,0 @@ -import hashlib -import os -import site -import tarfile -import urllib.parse -from pathlib import Path -from typing import TYPE_CHECKING, Dict, List, Optional - -from wasabi import msg - -from ... import about -from ...errors import Errors -from ...git_info import GIT_VERSION -from ...util import ENV_VARS, check_bool_env_var, get_minor_version -from .._util import ( - download_file, - ensure_pathy, - get_checksum, - get_hash, - make_tempdir, - upload_file, -) - -if TYPE_CHECKING: - from pathy import FluidPath # noqa: F401 - - -class RemoteStorage: - """Push and pull outputs to and from a remote file storage. - - Remotes can be anything that `smart-open` can support: AWS, GCS, file system, - ssh, etc. - """ - - def __init__(self, project_root: Path, url: str, *, compression="gz"): - self.root = project_root - self.url = ensure_pathy(url) - self.compression = compression - - def push(self, path: Path, command_hash: str, content_hash: str) -> "FluidPath": - """Compress a file or directory within a project and upload it to a remote - storage. If an object exists at the full URL, nothing is done. - - Within the remote storage, files are addressed by their project path - (url encoded) and two user-supplied hashes, representing their creation - context and their file contents. If the URL already exists, the data is - not uploaded. Paths are archived and compressed prior to upload. - """ - loc = self.root / path - if not loc.exists(): - raise IOError(f"Cannot push {loc}: does not exist.") - url = self.make_url(path, command_hash, content_hash) - if url.exists(): - return url - tmp: Path - with make_tempdir() as tmp: - tar_loc = tmp / self.encode_name(str(path)) - mode_string = f"w:{self.compression}" if self.compression else "w" - with tarfile.open(tar_loc, mode=mode_string) as tar_file: - tar_file.add(str(loc), arcname=str(path)) - upload_file(tar_loc, url) - return url - - def pull( - self, - path: Path, - *, - command_hash: Optional[str] = None, - content_hash: Optional[str] = None, - ) -> Optional["FluidPath"]: - """Retrieve a file from the remote cache. If the file already exists, - nothing is done. - - If the command_hash and/or content_hash are specified, only matching - results are returned. If no results are available, an error is raised. - """ - dest = self.root / path - if dest.exists(): - return None - url = self.find(path, command_hash=command_hash, content_hash=content_hash) - if url is None: - return url - else: - # Make sure the destination exists - if not dest.parent.exists(): - dest.parent.mkdir(parents=True) - tmp: Path - with make_tempdir() as tmp: - tar_loc = tmp / url.parts[-1] - download_file(url, tar_loc) - mode_string = f"r:{self.compression}" if self.compression else "r" - with tarfile.open(tar_loc, mode=mode_string) as tar_file: - # This requires that the path is added correctly, relative - # to root. This is how we set things up in push() - - # Disallow paths outside the current directory for the tar - # file (CVE-2007-4559, directory traversal vulnerability) - def is_within_directory(directory, target): - abs_directory = os.path.abspath(directory) - abs_target = os.path.abspath(target) - prefix = os.path.commonprefix([abs_directory, abs_target]) - return prefix == abs_directory - - def safe_extract(tar, path): - for member in tar.getmembers(): - member_path = os.path.join(path, member.name) - if not is_within_directory(path, member_path): - raise ValueError(Errors.E852) - tar.extractall(path) - - safe_extract(tar_file, self.root) - return url - - def find( - self, - path: Path, - *, - command_hash: Optional[str] = None, - content_hash: Optional[str] = None, - ) -> Optional["FluidPath"]: - """Find the best matching version of a file within the storage, - or `None` if no match can be found. If both the creation and content hash - are specified, only exact matches will be returned. Otherwise, the most - recent matching file is preferred. - """ - name = self.encode_name(str(path)) - urls = [] - if command_hash is not None and content_hash is not None: - url = self.url / name / command_hash / content_hash - urls = [url] if url.exists() else [] - elif command_hash is not None: - if (self.url / name / command_hash).exists(): - urls = list((self.url / name / command_hash).iterdir()) - else: - if (self.url / name).exists(): - for sub_dir in (self.url / name).iterdir(): - urls.extend(sub_dir.iterdir()) - if content_hash is not None: - urls = [url for url in urls if url.parts[-1] == content_hash] - if len(urls) >= 2: - try: - urls.sort(key=lambda x: x.stat().last_modified) # type: ignore - except Exception: - msg.warn( - "Unable to sort remote files by last modified. The file(s) " - "pulled from the cache may not be the most recent." - ) - return urls[-1] if urls else None - - def make_url(self, path: Path, command_hash: str, content_hash: str) -> "FluidPath": - """Construct a URL from a subpath, a creation hash and a content hash.""" - return self.url / self.encode_name(str(path)) / command_hash / content_hash - - def encode_name(self, name: str) -> str: - """Encode a subpath into a URL-safe name.""" - return urllib.parse.quote_plus(name) - - -def get_content_hash(loc: Path) -> str: - return get_checksum(loc) - - -def get_command_hash( - site_hash: str, env_hash: str, deps: List[Path], cmd: List[str] -) -> str: - """Create a hash representing the execution of a command. This includes the - currently installed packages, whatever environment variables have been marked - as relevant, and the command. - """ - if check_bool_env_var(ENV_VARS.PROJECT_USE_GIT_VERSION): - spacy_v = GIT_VERSION - else: - spacy_v = str(get_minor_version(about.__version__) or "") - dep_checksums = [get_checksum(dep) for dep in sorted(deps)] - hashes = [spacy_v, site_hash, env_hash] + dep_checksums - hashes.extend(cmd) - creation_bytes = "".join(hashes).encode("utf8") - return hashlib.md5(creation_bytes).hexdigest() - - -def get_site_hash(): - """Hash the current Python environment's site-packages contents, including - the name and version of the libraries. The list we're hashing is what - `pip freeze` would output. - """ - site_dirs = site.getsitepackages() - if site.ENABLE_USER_SITE: - site_dirs.extend(site.getusersitepackages()) - packages = set() - for site_dir in site_dirs: - site_dir = Path(site_dir) - for subpath in site_dir.iterdir(): - if subpath.parts[-1].endswith("dist-info"): - packages.add(subpath.parts[-1].replace(".dist-info", "")) - package_bytes = "".join(sorted(packages)).encode("utf8") - return hashlib.md5sum(package_bytes).hexdigest() - - -def get_env_hash(env: Dict[str, str]) -> str: - """Construct a hash of the environment variables that will be passed into - the commands. - - Values in the env dict may be references to the current os.environ, using - the syntax $ENV_VAR to mean os.environ[ENV_VAR] - """ - env_vars = {} - for key, value in env.items(): - if value.startswith("$"): - env_vars[key] = os.environ.get(value[1:], "") - else: - env_vars[key] = value - return get_hash(env_vars) diff --git a/spacy/cli/project/run.py b/spacy/cli/project/run.py deleted file mode 100644 index 43972a202..000000000 --- a/spacy/cli/project/run.py +++ /dev/null @@ -1,379 +0,0 @@ -import os.path -import sys -from pathlib import Path -from typing import Any, Dict, Iterable, List, Optional, Sequence, Tuple - -import srsly -import typer -from wasabi import msg -from wasabi.util import locale_escape - -from ... import about -from ...git_info import GIT_VERSION -from ...util import ( - ENV_VARS, - SimpleFrozenDict, - SimpleFrozenList, - check_bool_env_var, - is_cwd, - is_minor_version_match, - join_command, - run_command, - split_command, - working_dir, -) -from .._util import ( - COMMAND, - PROJECT_FILE, - PROJECT_LOCK, - Arg, - Opt, - get_checksum, - get_hash, - load_project_config, - parse_config_overrides, - project_cli, -) - - -@project_cli.command( - "run", context_settings={"allow_extra_args": True, "ignore_unknown_options": True} -) -def project_run_cli( - # fmt: off - ctx: typer.Context, # This is only used to read additional arguments - subcommand: str = Arg(None, help=f"Name of command defined in the {PROJECT_FILE}"), - project_dir: Path = Arg(Path.cwd(), help="Location of project directory. Defaults to current working directory.", exists=True, file_okay=False), - force: bool = Opt(False, "--force", "-F", help="Force re-running steps, even if nothing changed"), - dry: bool = Opt(False, "--dry", "-D", help="Perform a dry run and don't execute scripts"), - show_help: bool = Opt(False, "--help", help="Show help message and available subcommands") - # fmt: on -): - """Run a named command or workflow defined in the project.yml. If a workflow - name is specified, all commands in the workflow are run, in order. If - commands define dependencies and/or outputs, they will only be re-run if - state has changed. - - DOCS: https://spacy.io/api/cli#project-run - """ - if show_help or not subcommand: - print_run_help(project_dir, subcommand) - else: - overrides = parse_config_overrides(ctx.args) - project_run(project_dir, subcommand, overrides=overrides, force=force, dry=dry) - - -def project_run( - project_dir: Path, - subcommand: str, - *, - overrides: Dict[str, Any] = SimpleFrozenDict(), - force: bool = False, - dry: bool = False, - capture: bool = False, - skip_requirements_check: bool = False, -) -> None: - """Run a named script defined in the project.yml. If the script is part - of the default pipeline (defined in the "run" section), DVC is used to - execute the command, so it can determine whether to rerun it. It then - calls into "exec" to execute it. - - project_dir (Path): Path to project directory. - subcommand (str): Name of command to run. - overrides (Dict[str, Any]): Optional config overrides. - force (bool): Force re-running, even if nothing changed. - dry (bool): Perform a dry run and don't execute commands. - capture (bool): Whether to capture the output and errors of individual commands. - If False, the stdout and stderr will not be redirected, and if there's an error, - sys.exit will be called with the return code. You should use capture=False - when you want to turn over execution to the command, and capture=True - when you want to run the command more like a function. - skip_requirements_check (bool): Whether to skip the requirements check. - """ - config = load_project_config(project_dir, overrides=overrides) - commands = {cmd["name"]: cmd for cmd in config.get("commands", [])} - workflows = config.get("workflows", {}) - validate_subcommand(list(commands.keys()), list(workflows.keys()), subcommand) - - req_path = project_dir / "requirements.txt" - if not skip_requirements_check: - if config.get("check_requirements", True) and os.path.exists(req_path): - with req_path.open() as requirements_file: - _check_requirements([req.strip() for req in requirements_file]) - - if subcommand in workflows: - msg.info(f"Running workflow '{subcommand}'") - for cmd in workflows[subcommand]: - project_run( - project_dir, - cmd, - overrides=overrides, - force=force, - dry=dry, - capture=capture, - skip_requirements_check=True, - ) - else: - cmd = commands[subcommand] - for dep in cmd.get("deps", []): - if not (project_dir / dep).exists(): - err = f"Missing dependency specified by command '{subcommand}': {dep}" - err_help = "Maybe you forgot to run the 'project assets' command or a previous step?" - err_exits = 1 if not dry else None - msg.fail(err, err_help, exits=err_exits) - check_spacy_commit = check_bool_env_var(ENV_VARS.PROJECT_USE_GIT_VERSION) - with working_dir(project_dir) as current_dir: - msg.divider(subcommand) - rerun = check_rerun(current_dir, cmd, check_spacy_commit=check_spacy_commit) - if not rerun and not force: - msg.info(f"Skipping '{cmd['name']}': nothing changed") - else: - run_commands(cmd["script"], dry=dry, capture=capture) - if not dry: - update_lockfile(current_dir, cmd) - - -def print_run_help(project_dir: Path, subcommand: Optional[str] = None) -> None: - """Simulate a CLI help prompt using the info available in the project.yml. - - project_dir (Path): The project directory. - subcommand (Optional[str]): The subcommand or None. If a subcommand is - provided, the subcommand help is shown. Otherwise, the top-level help - and a list of available commands is printed. - """ - config = load_project_config(project_dir) - config_commands = config.get("commands", []) - commands = {cmd["name"]: cmd for cmd in config_commands} - workflows = config.get("workflows", {}) - project_loc = "" if is_cwd(project_dir) else project_dir - if subcommand: - validate_subcommand(list(commands.keys()), list(workflows.keys()), subcommand) - print(f"Usage: {COMMAND} project run {subcommand} {project_loc}") - if subcommand in commands: - help_text = commands[subcommand].get("help") - if help_text: - print(f"\n{help_text}\n") - elif subcommand in workflows: - steps = workflows[subcommand] - print(f"\nWorkflow consisting of {len(steps)} commands:") - steps_data = [ - (f"{i + 1}. {step}", commands[step].get("help", "")) - for i, step in enumerate(steps) - ] - msg.table(steps_data) - help_cmd = f"{COMMAND} project run [COMMAND] {project_loc} --help" - print(f"For command details, run: {help_cmd}") - else: - print("") - title = config.get("title") - if title: - print(f"{locale_escape(title)}\n") - if config_commands: - print(f"Available commands in {PROJECT_FILE}") - print(f"Usage: {COMMAND} project run [COMMAND] {project_loc}") - msg.table([(cmd["name"], cmd.get("help", "")) for cmd in config_commands]) - if workflows: - print(f"Available workflows in {PROJECT_FILE}") - print(f"Usage: {COMMAND} project run [WORKFLOW] {project_loc}") - msg.table([(name, " -> ".join(steps)) for name, steps in workflows.items()]) - - -def run_commands( - commands: Iterable[str] = SimpleFrozenList(), - silent: bool = False, - dry: bool = False, - capture: bool = False, -) -> None: - """Run a sequence of commands in a subprocess, in order. - - commands (List[str]): The string commands. - silent (bool): Don't print the commands. - dry (bool): Perform a dry run and don't execut anything. - capture (bool): Whether to capture the output and errors of individual commands. - If False, the stdout and stderr will not be redirected, and if there's an error, - sys.exit will be called with the return code. You should use capture=False - when you want to turn over execution to the command, and capture=True - when you want to run the command more like a function. - """ - for c in commands: - command = split_command(c) - # Not sure if this is needed or a good idea. Motivation: users may often - # use commands in their config that reference "python" and we want to - # make sure that it's always executing the same Python that spaCy is - # executed with and the pip in the same env, not some other Python/pip. - # Also ensures cross-compatibility if user 1 writes "python3" (because - # that's how it's set up on their system), and user 2 without the - # shortcut tries to re-run the command. - if len(command) and command[0] in ("python", "python3"): - command[0] = sys.executable - elif len(command) and command[0] in ("pip", "pip3"): - command = [sys.executable, "-m", "pip", *command[1:]] - if not silent: - print(f"Running command: {join_command(command)}") - if not dry: - run_command(command, capture=capture) - - -def validate_subcommand( - commands: Sequence[str], workflows: Sequence[str], subcommand: str -) -> None: - """Check that a subcommand is valid and defined. Raises an error otherwise. - - commands (Sequence[str]): The available commands. - subcommand (str): The subcommand. - """ - if not commands and not workflows: - msg.fail(f"No commands or workflows defined in {PROJECT_FILE}", exits=1) - if subcommand not in commands and subcommand not in workflows: - help_msg = [] - if subcommand in ["assets", "asset"]: - help_msg.append("Did you mean to run: python -m spacy project assets?") - if commands: - help_msg.append(f"Available commands: {', '.join(commands)}") - if workflows: - help_msg.append(f"Available workflows: {', '.join(workflows)}") - msg.fail( - f"Can't find command or workflow '{subcommand}' in {PROJECT_FILE}", - ". ".join(help_msg), - exits=1, - ) - - -def check_rerun( - project_dir: Path, - command: Dict[str, Any], - *, - check_spacy_version: bool = True, - check_spacy_commit: bool = False, -) -> bool: - """Check if a command should be rerun because its settings or inputs/outputs - changed. - - project_dir (Path): The current project directory. - command (Dict[str, Any]): The command, as defined in the project.yml. - strict_version (bool): - RETURNS (bool): Whether to re-run the command. - """ - # Always rerun if no-skip is set - if command.get("no_skip", False): - return True - lock_path = project_dir / PROJECT_LOCK - if not lock_path.exists(): # We don't have a lockfile, run command - return True - data = srsly.read_yaml(lock_path) - if command["name"] not in data: # We don't have info about this command - return True - entry = data[command["name"]] - # Always run commands with no outputs (otherwise they'd always be skipped) - if not entry.get("outs", []): - return True - # Always rerun if spaCy version or commit hash changed - spacy_v = entry.get("spacy_version") - commit = entry.get("spacy_git_version") - if check_spacy_version and not is_minor_version_match(spacy_v, about.__version__): - info = f"({spacy_v} in {PROJECT_LOCK}, {about.__version__} current)" - msg.info(f"Re-running '{command['name']}': spaCy minor version changed {info}") - return True - if check_spacy_commit and commit != GIT_VERSION: - info = f"({commit} in {PROJECT_LOCK}, {GIT_VERSION} current)" - msg.info(f"Re-running '{command['name']}': spaCy commit changed {info}") - return True - # If the entry in the lockfile matches the lockfile entry that would be - # generated from the current command, we don't rerun because it means that - # all inputs/outputs, hashes and scripts are the same and nothing changed - lock_entry = get_lock_entry(project_dir, command) - exclude = ["spacy_version", "spacy_git_version"] - return get_hash(lock_entry, exclude=exclude) != get_hash(entry, exclude=exclude) - - -def update_lockfile(project_dir: Path, command: Dict[str, Any]) -> None: - """Update the lockfile after running a command. Will create a lockfile if - it doesn't yet exist and will add an entry for the current command, its - script and dependencies/outputs. - - project_dir (Path): The current project directory. - command (Dict[str, Any]): The command, as defined in the project.yml. - """ - lock_path = project_dir / PROJECT_LOCK - if not lock_path.exists(): - srsly.write_yaml(lock_path, {}) - data = {} - else: - data = srsly.read_yaml(lock_path) - data[command["name"]] = get_lock_entry(project_dir, command) - srsly.write_yaml(lock_path, data) - - -def get_lock_entry(project_dir: Path, command: Dict[str, Any]) -> Dict[str, Any]: - """Get a lockfile entry for a given command. An entry includes the command, - the script (command steps) and a list of dependencies and outputs with - their paths and file hashes, if available. The format is based on the - dvc.lock files, to keep things consistent. - - project_dir (Path): The current project directory. - command (Dict[str, Any]): The command, as defined in the project.yml. - RETURNS (Dict[str, Any]): The lockfile entry. - """ - deps = get_fileinfo(project_dir, command.get("deps", [])) - outs = get_fileinfo(project_dir, command.get("outputs", [])) - outs_nc = get_fileinfo(project_dir, command.get("outputs_no_cache", [])) - return { - "cmd": f"{COMMAND} run {command['name']}", - "script": command["script"], - "deps": deps, - "outs": [*outs, *outs_nc], - "spacy_version": about.__version__, - "spacy_git_version": GIT_VERSION, - } - - -def get_fileinfo(project_dir: Path, paths: List[str]) -> List[Dict[str, Optional[str]]]: - """Generate the file information for a list of paths (dependencies, outputs). - Includes the file path and the file's checksum. - - project_dir (Path): The current project directory. - paths (List[str]): The file paths. - RETURNS (List[Dict[str, str]]): The lockfile entry for a file. - """ - data = [] - for path in paths: - file_path = project_dir / path - md5 = get_checksum(file_path) if file_path.exists() else None - data.append({"path": path, "md5": md5}) - return data - - -def _check_requirements(requirements: List[str]) -> Tuple[bool, bool]: - """Checks whether requirements are installed and free of version conflicts. - requirements (List[str]): List of requirements. - RETURNS (Tuple[bool, bool]): Whether (1) any packages couldn't be imported, (2) any packages with version conflicts - exist. - """ - import pkg_resources - - failed_pkgs_msgs: List[str] = [] - conflicting_pkgs_msgs: List[str] = [] - - for req in requirements: - try: - pkg_resources.require(req) - except pkg_resources.DistributionNotFound as dnf: - failed_pkgs_msgs.append(dnf.report()) - except pkg_resources.VersionConflict as vc: - conflicting_pkgs_msgs.append(vc.report()) - except Exception: - msg.warn( - f"Unable to check requirement: {req} " - "Checks are currently limited to requirement specifiers " - "(PEP 508)" - ) - - if len(failed_pkgs_msgs) or len(conflicting_pkgs_msgs): - msg.warn( - title="Missing requirements or requirement conflicts detected. Make sure your Python environment is set up " - "correctly and you installed all requirements specified in your project's requirements.txt: " - ) - for pgk_msg in failed_pkgs_msgs + conflicting_pkgs_msgs: - msg.text(pgk_msg) - - return len(failed_pkgs_msgs) > 0, len(conflicting_pkgs_msgs) > 0 diff --git a/spacy/default_config.cfg b/spacy/default_config.cfg index 694fb732f..b005eef40 100644 --- a/spacy/default_config.cfg +++ b/spacy/default_config.cfg @@ -26,6 +26,9 @@ batch_size = 1000 [nlp.tokenizer] @tokenizers = "spacy.Tokenizer.v1" +[nlp.vectors] +@vectors = "spacy.Vectors.v1" + # The pipeline components and their models [components] diff --git a/spacy/errors.py b/spacy/errors.py index db1a886aa..dac07f804 100644 --- a/spacy/errors.py +++ b/spacy/errors.py @@ -219,6 +219,7 @@ class Warnings(metaclass=ErrorsWithCodes): W125 = ("The StaticVectors key_attr is no longer used. To set a custom " "key attribute for vectors, configure it through Vectors(attr=) or " "'spacy init vectors --attr'") + W126 = ("These keys are unsupported: {unsupported}") class Errors(metaclass=ErrorsWithCodes): @@ -553,12 +554,12 @@ class Errors(metaclass=ErrorsWithCodes): "during training, make sure to include it in 'annotating components'") # New errors added in v3.x + E849 = ("The vocab only supports {method} for vectors of type " + "spacy.vectors.Vectors, not {vectors_type}.") E850 = ("The PretrainVectors objective currently only supports default or " "floret vectors, not {mode} vectors.") E851 = ("The 'textcat' component labels should only have values of 0 or 1, " "but found value of '{val}'.") - E852 = ("The tar file pulled from the remote attempted an unsafe path " - "traversal.") E853 = ("Unsupported component factory name '{name}'. The character '.' is " "not permitted in factory names.") E854 = ("Unable to set doc.ents. Check that the 'ents_filter' does not " @@ -981,6 +982,8 @@ class Errors(metaclass=ErrorsWithCodes): " 'min_length': {min_length}, 'max_length': {max_length}") E1054 = ("The text, including whitespace, must match between reference and " "predicted docs when training {component}.") + E1055 = ("The 'replace_listener' callback expects {num_params} parameters, " + "but only callbacks with one or three parameters are supported") # Deprecated model shortcuts, only used in errors and warnings diff --git a/spacy/kb/candidate.pyx b/spacy/kb/candidate.pyx index 53fc9b036..4369676e2 100644 --- a/spacy/kb/candidate.pyx +++ b/spacy/kb/candidate.pyx @@ -1,4 +1,4 @@ -# cython: infer_types=True, profile=True +# cython: infer_types=True from typing import Iterable diff --git a/spacy/kb/kb.pyx b/spacy/kb/kb.pyx index 6ad4c3564..c7db34e16 100644 --- a/spacy/kb/kb.pyx +++ b/spacy/kb/kb.pyx @@ -1,4 +1,4 @@ -# cython: infer_types=True, profile=True +# cython: infer_types=True from pathlib import Path from typing import Iterable, Tuple, Union diff --git a/spacy/kb/kb_in_memory.pyx b/spacy/kb/kb_in_memory.pyx index 02773cbae..2b21f246a 100644 --- a/spacy/kb/kb_in_memory.pyx +++ b/spacy/kb/kb_in_memory.pyx @@ -1,4 +1,4 @@ -# cython: infer_types=True, profile=True +# cython: infer_types=True from typing import Any, Callable, Dict, Iterable import srsly diff --git a/spacy/lang/es/lemmatizer.py b/spacy/lang/es/lemmatizer.py index 44f968347..ee5d38e84 100644 --- a/spacy/lang/es/lemmatizer.py +++ b/spacy/lang/es/lemmatizer.py @@ -163,7 +163,7 @@ class SpanishLemmatizer(Lemmatizer): for old, new in self.lookups.get_table("lemma_rules").get("det", []): if word == old: return [new] - # If none of the specfic rules apply, search in the common rules for + # If none of the specific rules apply, search in the common rules for # determiners and pronouns that follow a unique pattern for # lemmatization. If the word is in the list, return the corresponding # lemma. @@ -291,7 +291,7 @@ class SpanishLemmatizer(Lemmatizer): for old, new in self.lookups.get_table("lemma_rules").get("pron", []): if word == old: return [new] - # If none of the specfic rules apply, search in the common rules for + # If none of the specific rules apply, search in the common rules for # determiners and pronouns that follow a unique pattern for # lemmatization. If the word is in the list, return the corresponding # lemma. diff --git a/spacy/lang/grc/punctuation.py b/spacy/lang/grc/punctuation.py index 8e9fc8bf2..59037617d 100644 --- a/spacy/lang/grc/punctuation.py +++ b/spacy/lang/grc/punctuation.py @@ -15,6 +15,7 @@ _prefixes = ( [ "†", "⸏", + "〈", ] + LIST_PUNCT + LIST_ELLIPSES @@ -31,6 +32,7 @@ _suffixes = ( + [ "†", "⸎", + "〉", r"(?<=[\u1F00-\u1FFF\u0370-\u03FF])[\-\.⸏]", ] ) diff --git a/spacy/language.py b/spacy/language.py index 46f4a7996..26152b90a 100644 --- a/spacy/language.py +++ b/spacy/language.py @@ -1,4 +1,5 @@ import functools +import inspect import itertools import multiprocessing as mp import random @@ -64,6 +65,7 @@ from .util import ( registry, warn_if_jupyter_cupy, ) +from .vectors import BaseVectors from .vocab import Vocab, create_vocab PipeCallable = Callable[[Doc], Doc] @@ -157,6 +159,7 @@ class Language: max_length: int = 10**6, meta: Dict[str, Any] = {}, create_tokenizer: Optional[Callable[["Language"], Callable[[str], Doc]]] = None, + create_vectors: Optional[Callable[["Vocab"], BaseVectors]] = None, batch_size: int = 1000, **kwargs, ) -> None: @@ -197,6 +200,10 @@ class Language: if vocab is True: vectors_name = meta.get("vectors", {}).get("name") vocab = create_vocab(self.lang, self.Defaults, vectors_name=vectors_name) + if not create_vectors: + vectors_cfg = {"vectors": self._config["nlp"]["vectors"]} + create_vectors = registry.resolve(vectors_cfg)["vectors"] + vocab.vectors = create_vectors(vocab) else: if (self.lang and vocab.lang) and (self.lang != vocab.lang): raise ValueError(Errors.E150.format(nlp=self.lang, vocab=vocab.lang)) @@ -1764,6 +1771,10 @@ class Language: ).merge(config) if "nlp" not in config: raise ValueError(Errors.E985.format(config=config)) + # fill in [nlp.vectors] if not present (as a narrower alternative to + # auto-filling [nlp] from the default config) + if "vectors" not in config["nlp"]: + config["nlp"]["vectors"] = {"@vectors": "spacy.Vectors.v1"} config_lang = config["nlp"].get("lang") if config_lang is not None and config_lang != cls.lang: raise ValueError( @@ -1795,6 +1806,7 @@ class Language: filled["nlp"], validate=validate, schema=ConfigSchemaNlp ) create_tokenizer = resolved_nlp["tokenizer"] + create_vectors = resolved_nlp["vectors"] before_creation = resolved_nlp["before_creation"] after_creation = resolved_nlp["after_creation"] after_pipeline_creation = resolved_nlp["after_pipeline_creation"] @@ -1815,7 +1827,12 @@ class Language: # inside stuff like the spacy train function. If we loaded them here, # then we would load them twice at runtime: once when we make from config, # and then again when we load from disk. - nlp = lang_cls(vocab=vocab, create_tokenizer=create_tokenizer, meta=meta) + nlp = lang_cls( + vocab=vocab, + create_tokenizer=create_tokenizer, + create_vectors=create_vectors, + meta=meta, + ) if after_creation is not None: nlp = after_creation(nlp) if not isinstance(nlp, cls): @@ -2032,8 +2049,20 @@ class Language: # Go over the listener layers and replace them for listener in pipe_listeners: new_model = tok2vec_model.copy() - if "replace_listener" in tok2vec_model.attrs: - new_model = tok2vec_model.attrs["replace_listener"](new_model) + replace_listener_func = tok2vec_model.attrs.get("replace_listener") + if replace_listener_func is not None: + # Pass the extra args to the callback without breaking compatibility with + # old library versions that only expect a single parameter. + num_params = len( + inspect.signature(replace_listener_func).parameters + ) + if num_params == 1: + new_model = replace_listener_func(new_model) + elif num_params == 3: + new_model = replace_listener_func(new_model, listener, tok2vec) + else: + raise ValueError(Errors.E1055.format(num_params=num_params)) + util.replace_model_node(pipe.model, listener, new_model) # type: ignore[attr-defined] tok2vec.remove_listener(listener, pipe_name) diff --git a/spacy/lexeme.pyx b/spacy/lexeme.pyx index 60d22e615..f803d5e93 100644 --- a/spacy/lexeme.pyx +++ b/spacy/lexeme.pyx @@ -1,4 +1,5 @@ # cython: embedsignature=True +# cython: profile=False # Compiler crashes on memory view coercion without this. Should report bug. cimport numpy as np from libc.string cimport memset diff --git a/spacy/matcher/dependencymatcher.pyx b/spacy/matcher/dependencymatcher.pyx index 348e000ff..ab5f5d5d1 100644 --- a/spacy/matcher/dependencymatcher.pyx +++ b/spacy/matcher/dependencymatcher.pyx @@ -1,4 +1,4 @@ -# cython: infer_types=True, profile=True +# cython: infer_types=True import warnings from collections import defaultdict from itertools import product @@ -129,6 +129,7 @@ cdef class DependencyMatcher: else: required_keys = {"RIGHT_ID", "RIGHT_ATTRS", "REL_OP", "LEFT_ID"} relation_keys = set(relation.keys()) + # Identify required keys that have not been specified missing = required_keys - relation_keys if missing: missing_txt = ", ".join(list(missing)) @@ -136,6 +137,13 @@ cdef class DependencyMatcher: required=required_keys, missing=missing_txt )) + # Identify additional, unsupported keys + unsupported = relation_keys - required_keys + if unsupported: + unsupported_txt = ", ".join(list(unsupported)) + warnings.warn(Warnings.W126.format( + unsupported=unsupported_txt + )) if ( relation["RIGHT_ID"] in visited_nodes or relation["LEFT_ID"] not in visited_nodes diff --git a/spacy/matcher/levenshtein.pyx b/spacy/matcher/levenshtein.pyx index e823ce99d..e394f2cf4 100644 --- a/spacy/matcher/levenshtein.pyx +++ b/spacy/matcher/levenshtein.pyx @@ -1,4 +1,4 @@ -# cython: profile=True, binding=True, infer_types=True +# cython: binding=True, infer_types=True from cpython.object cimport PyObject from libc.stdint cimport int64_t diff --git a/spacy/matcher/matcher.pyx b/spacy/matcher/matcher.pyx index 167f85af4..9a9ed4212 100644 --- a/spacy/matcher/matcher.pyx +++ b/spacy/matcher/matcher.pyx @@ -1,4 +1,4 @@ -# cython: binding=True, infer_types=True, profile=True +# cython: binding=True, infer_types=True from typing import Iterable, List from cymem.cymem cimport Pool diff --git a/spacy/matcher/phrasematcher.pyx b/spacy/matcher/phrasematcher.pyx index 26633e6d6..4efcdb05c 100644 --- a/spacy/matcher/phrasematcher.pyx +++ b/spacy/matcher/phrasematcher.pyx @@ -1,4 +1,4 @@ -# cython: infer_types=True, profile=True +# cython: infer_types=True from preshed.maps cimport map_clear, map_get, map_init, map_iter, map_set import warnings diff --git a/spacy/ml/parser_model.pyx b/spacy/ml/parser_model.pyx index ae60972aa..f004c562e 100644 --- a/spacy/ml/parser_model.pyx +++ b/spacy/ml/parser_model.pyx @@ -1,4 +1,5 @@ # cython: infer_types=True, cdivision=True, boundscheck=False +# cython: profile=False cimport numpy as np from libc.math cimport exp from libc.stdlib cimport calloc, free, realloc diff --git a/spacy/ml/staticvectors.py b/spacy/ml/staticvectors.py index b75240c5d..1a1b0a0ff 100644 --- a/spacy/ml/staticvectors.py +++ b/spacy/ml/staticvectors.py @@ -9,7 +9,7 @@ from thinc.util import partial from ..attrs import ORTH from ..errors import Errors, Warnings from ..tokens import Doc -from ..vectors import Mode +from ..vectors import Mode, Vectors from ..vocab import Vocab @@ -48,11 +48,14 @@ def forward( key_attr: int = getattr(vocab.vectors, "attr", ORTH) keys = model.ops.flatten([cast(Ints1d, doc.to_array(key_attr)) for doc in docs]) W = cast(Floats2d, model.ops.as_contig(model.get_param("W"))) - if vocab.vectors.mode == Mode.default: + if isinstance(vocab.vectors, Vectors) and vocab.vectors.mode == Mode.default: V = model.ops.asarray(vocab.vectors.data) rows = vocab.vectors.find(keys=keys) V = model.ops.as_contig(V[rows]) - elif vocab.vectors.mode == Mode.floret: + elif isinstance(vocab.vectors, Vectors) and vocab.vectors.mode == Mode.floret: + V = vocab.vectors.get_batch(keys) + V = model.ops.as_contig(V) + elif hasattr(vocab.vectors, "get_batch"): V = vocab.vectors.get_batch(keys) V = model.ops.as_contig(V) else: @@ -61,7 +64,7 @@ def forward( vectors_data = model.ops.gemm(V, W, trans2=True) except ValueError: raise RuntimeError(Errors.E896) - if vocab.vectors.mode == Mode.default: + if isinstance(vocab.vectors, Vectors) and vocab.vectors.mode == Mode.default: # Convert negative indices to 0-vectors # TODO: more options for UNK tokens vectors_data[rows < 0] = 0 diff --git a/spacy/morphology.pyx b/spacy/morphology.pyx index ecbbed729..cef45b04d 100644 --- a/spacy/morphology.pyx +++ b/spacy/morphology.pyx @@ -1,4 +1,5 @@ # cython: infer_types +# cython: profile=False import warnings import numpy diff --git a/spacy/parts_of_speech.pyx b/spacy/parts_of_speech.pyx index e71fb917f..98e3570ec 100644 --- a/spacy/parts_of_speech.pyx +++ b/spacy/parts_of_speech.pyx @@ -1,4 +1,4 @@ - +# cython: profile=False IDS = { "": NO_TAG, "ADJ": ADJ, diff --git a/spacy/pipeline/_edit_tree_internals/edit_trees.pyx b/spacy/pipeline/_edit_tree_internals/edit_trees.pyx index 78cd25622..7abd9f2a6 100644 --- a/spacy/pipeline/_edit_tree_internals/edit_trees.pyx +++ b/spacy/pipeline/_edit_tree_internals/edit_trees.pyx @@ -1,4 +1,5 @@ # cython: infer_types=True, binding=True +# cython: profile=False from cython.operator cimport dereference as deref from libc.stdint cimport UINT32_MAX, uint32_t from libc.string cimport memset diff --git a/spacy/pipeline/_parser_internals/_beam_utils.pyx b/spacy/pipeline/_parser_internals/_beam_utils.pyx index de8f0bf7b..ac04be5a7 100644 --- a/spacy/pipeline/_parser_internals/_beam_utils.pyx +++ b/spacy/pipeline/_parser_internals/_beam_utils.pyx @@ -1,5 +1,4 @@ # cython: infer_types=True -# cython: profile=True import numpy from thinc.extra.search cimport Beam diff --git a/spacy/pipeline/_parser_internals/_state.pyx b/spacy/pipeline/_parser_internals/_state.pyx index e69de29bb..61bf62038 100644 --- a/spacy/pipeline/_parser_internals/_state.pyx +++ b/spacy/pipeline/_parser_internals/_state.pyx @@ -0,0 +1 @@ +# cython: profile=False diff --git a/spacy/pipeline/_parser_internals/arc_eager.pyx b/spacy/pipeline/_parser_internals/arc_eager.pyx index bcb4626fb..e13754944 100644 --- a/spacy/pipeline/_parser_internals/arc_eager.pyx +++ b/spacy/pipeline/_parser_internals/arc_eager.pyx @@ -1,4 +1,4 @@ -# cython: profile=True, cdivision=True, infer_types=True +# cython: cdivision=True, infer_types=True from cymem.cymem cimport Address, Pool from libc.stdint cimport int32_t from libcpp.vector cimport vector diff --git a/spacy/pipeline/_parser_internals/ner.pyx b/spacy/pipeline/_parser_internals/ner.pyx index 6c4f8e245..e4312bd2f 100644 --- a/spacy/pipeline/_parser_internals/ner.pyx +++ b/spacy/pipeline/_parser_internals/ner.pyx @@ -1,3 +1,4 @@ +# cython: profile=False from cymem.cymem cimport Pool from libc.stdint cimport int32_t diff --git a/spacy/pipeline/_parser_internals/nonproj.pyx b/spacy/pipeline/_parser_internals/nonproj.pyx index 93ad14feb..7de19851e 100644 --- a/spacy/pipeline/_parser_internals/nonproj.pyx +++ b/spacy/pipeline/_parser_internals/nonproj.pyx @@ -1,4 +1,4 @@ -# cython: profile=True, infer_types=True +# cython: infer_types=True """Implements the projectivize/deprojectivize mechanism in Nivre & Nilsson 2005 for doing pseudo-projective parsing implementation uses the HEAD decoration scheme. diff --git a/spacy/pipeline/_parser_internals/stateclass.pyx b/spacy/pipeline/_parser_internals/stateclass.pyx index fdb5004bb..e3b063b7d 100644 --- a/spacy/pipeline/_parser_internals/stateclass.pyx +++ b/spacy/pipeline/_parser_internals/stateclass.pyx @@ -1,4 +1,5 @@ # cython: infer_types=True +# cython: profile=False from libcpp.vector cimport vector from ...tokens.doc cimport Doc diff --git a/spacy/pipeline/_parser_internals/transition_system.pyx b/spacy/pipeline/_parser_internals/transition_system.pyx index aabbdfa24..e035053b3 100644 --- a/spacy/pipeline/_parser_internals/transition_system.pyx +++ b/spacy/pipeline/_parser_internals/transition_system.pyx @@ -1,4 +1,5 @@ # cython: infer_types=True +# cython: profile=False from __future__ import print_function from cymem.cymem cimport Pool diff --git a/spacy/pipeline/dep_parser.pyx b/spacy/pipeline/dep_parser.pyx index 57f091788..18a220bd6 100644 --- a/spacy/pipeline/dep_parser.pyx +++ b/spacy/pipeline/dep_parser.pyx @@ -1,4 +1,4 @@ -# cython: infer_types=True, profile=True, binding=True +# cython: infer_types=True, binding=True from collections import defaultdict from typing import Callable, Optional diff --git a/spacy/pipeline/morphologizer.pyx b/spacy/pipeline/morphologizer.pyx index 7ca3908bd..d415ae43c 100644 --- a/spacy/pipeline/morphologizer.pyx +++ b/spacy/pipeline/morphologizer.pyx @@ -1,4 +1,4 @@ -# cython: infer_types=True, profile=True, binding=True +# cython: infer_types=True, binding=True from itertools import islice from typing import Callable, Dict, Optional, Union diff --git a/spacy/pipeline/multitask.pyx b/spacy/pipeline/multitask.pyx index 2a62a50d5..f33a90fde 100644 --- a/spacy/pipeline/multitask.pyx +++ b/spacy/pipeline/multitask.pyx @@ -1,4 +1,4 @@ -# cython: infer_types=True, profile=True, binding=True +# cython: infer_types=True, binding=True from typing import Optional import numpy diff --git a/spacy/pipeline/ner.pyx b/spacy/pipeline/ner.pyx index 15c092ae9..bb009dc7a 100644 --- a/spacy/pipeline/ner.pyx +++ b/spacy/pipeline/ner.pyx @@ -1,4 +1,4 @@ -# cython: infer_types=True, profile=True, binding=True +# cython: infer_types=True, binding=True from collections import defaultdict from typing import Callable, Optional diff --git a/spacy/pipeline/pipe.pyx b/spacy/pipeline/pipe.pyx index 90775c465..72ea7e45a 100644 --- a/spacy/pipeline/pipe.pyx +++ b/spacy/pipeline/pipe.pyx @@ -1,4 +1,4 @@ -# cython: infer_types=True, profile=True, binding=True +# cython: infer_types=True, binding=True import warnings from typing import Callable, Dict, Iterable, Iterator, Tuple, Union diff --git a/spacy/pipeline/sentencizer.pyx b/spacy/pipeline/sentencizer.pyx index 76f296644..08ba9d989 100644 --- a/spacy/pipeline/sentencizer.pyx +++ b/spacy/pipeline/sentencizer.pyx @@ -1,4 +1,4 @@ -# cython: infer_types=True, profile=True, binding=True +# cython: infer_types=True, binding=True from typing import Callable, List, Optional import srsly diff --git a/spacy/pipeline/senter.pyx b/spacy/pipeline/senter.pyx index 37ddcc3c0..df093baa9 100644 --- a/spacy/pipeline/senter.pyx +++ b/spacy/pipeline/senter.pyx @@ -1,4 +1,4 @@ -# cython: infer_types=True, profile=True, binding=True +# cython: infer_types=True, binding=True from itertools import islice from typing import Callable, Optional diff --git a/spacy/pipeline/tagger.pyx b/spacy/pipeline/tagger.pyx index 4c5265a78..34e85d49c 100644 --- a/spacy/pipeline/tagger.pyx +++ b/spacy/pipeline/tagger.pyx @@ -1,4 +1,4 @@ -# cython: infer_types=True, profile=True, binding=True +# cython: infer_types=True, binding=True from itertools import islice from typing import Callable, Optional diff --git a/spacy/pipeline/trainable_pipe.pyx b/spacy/pipeline/trainable_pipe.pyx index e5865e070..8f219b327 100644 --- a/spacy/pipeline/trainable_pipe.pyx +++ b/spacy/pipeline/trainable_pipe.pyx @@ -1,4 +1,4 @@ -# cython: infer_types=True, profile=True, binding=True +# cython: infer_types=True, binding=True from typing import Callable, Dict, Iterable, Iterator, Optional, Tuple import srsly diff --git a/spacy/pipeline/transition_parser.pyx b/spacy/pipeline/transition_parser.pyx index 11c8fafc7..9a278fc13 100644 --- a/spacy/pipeline/transition_parser.pyx +++ b/spacy/pipeline/transition_parser.pyx @@ -1,4 +1,5 @@ # cython: infer_types=True, cdivision=True, boundscheck=False, binding=True +# cython: profile=False from __future__ import print_function cimport numpy as np diff --git a/spacy/schemas.py b/spacy/schemas.py index 525885456..fa987b90f 100644 --- a/spacy/schemas.py +++ b/spacy/schemas.py @@ -412,6 +412,7 @@ class ConfigSchemaNlp(BaseModel): after_creation: Optional[Callable[["Language"], "Language"]] = Field(..., title="Optional callback to modify nlp object after creation and before the pipeline is constructed") after_pipeline_creation: Optional[Callable[["Language"], "Language"]] = Field(..., title="Optional callback to modify nlp object after the pipeline is constructed") batch_size: Optional[int] = Field(..., title="Default batch size") + vectors: Callable = Field(..., title="Vectors implementation") # fmt: on class Config: @@ -480,66 +481,6 @@ CONFIG_SCHEMAS = { "initialize": ConfigSchemaInit, } - -# Project config Schema - - -class ProjectConfigAssetGitItem(BaseModel): - # fmt: off - repo: StrictStr = Field(..., title="URL of Git repo to download from") - path: StrictStr = Field(..., title="File path or sub-directory to download (used for sparse checkout)") - branch: StrictStr = Field("master", title="Branch to clone from") - # fmt: on - - -class ProjectConfigAssetURL(BaseModel): - # fmt: off - dest: StrictStr = Field(..., title="Destination of downloaded asset") - url: Optional[StrictStr] = Field(None, title="URL of asset") - checksum: Optional[str] = Field(None, title="MD5 hash of file", regex=r"([a-fA-F\d]{32})") - description: StrictStr = Field("", title="Description of asset") - # fmt: on - - -class ProjectConfigAssetGit(BaseModel): - # fmt: off - git: ProjectConfigAssetGitItem = Field(..., title="Git repo information") - checksum: Optional[str] = Field(None, title="MD5 hash of file", regex=r"([a-fA-F\d]{32})") - description: Optional[StrictStr] = Field(None, title="Description of asset") - # fmt: on - - -class ProjectConfigCommand(BaseModel): - # fmt: off - name: StrictStr = Field(..., title="Name of command") - help: Optional[StrictStr] = Field(None, title="Command description") - script: List[StrictStr] = Field([], title="List of CLI commands to run, in order") - deps: List[StrictStr] = Field([], title="File dependencies required by this command") - outputs: List[StrictStr] = Field([], title="Outputs produced by this command") - outputs_no_cache: List[StrictStr] = Field([], title="Outputs not tracked by DVC (DVC only)") - no_skip: bool = Field(False, title="Never skip this command, even if nothing changed") - # fmt: on - - class Config: - title = "A single named command specified in a project config" - extra = "forbid" - - -class ProjectConfigSchema(BaseModel): - # fmt: off - vars: Dict[StrictStr, Any] = Field({}, title="Optional variables to substitute in commands") - env: Dict[StrictStr, Any] = Field({}, title="Optional variable names to substitute in commands, mapped to environment variable names") - assets: List[Union[ProjectConfigAssetURL, ProjectConfigAssetGit]] = Field([], title="Data assets") - workflows: Dict[StrictStr, List[StrictStr]] = Field({}, title="Named workflows, mapped to list of project commands to run in order") - commands: List[ProjectConfigCommand] = Field([], title="Project command shortucts") - title: Optional[str] = Field(None, title="Project title") - spacy_version: Optional[StrictStr] = Field(None, title="spaCy version range that the project is compatible with") - # fmt: on - - class Config: - title = "Schema for project configuration file" - - # Recommendations for init config workflows diff --git a/spacy/strings.pyx b/spacy/strings.pyx index b0799d6fc..376a13175 100644 --- a/spacy/strings.pyx +++ b/spacy/strings.pyx @@ -1,4 +1,5 @@ # cython: infer_types=True +# cython: profile=False cimport cython from libc.stdint cimport uint32_t from libc.string cimport memcpy diff --git a/spacy/symbols.pyx b/spacy/symbols.pyx index d1deeb0e7..f7713577b 100644 --- a/spacy/symbols.pyx +++ b/spacy/symbols.pyx @@ -1,4 +1,5 @@ # cython: optimize.unpack_method_calls=False +# cython: profile=False IDS = { "": NIL, "IS_ALPHA": IS_ALPHA, diff --git a/spacy/tests/matcher/test_dependency_matcher.py b/spacy/tests/matcher/test_dependency_matcher.py index 44b3bb26b..be33f90cf 100644 --- a/spacy/tests/matcher/test_dependency_matcher.py +++ b/spacy/tests/matcher/test_dependency_matcher.py @@ -216,6 +216,11 @@ def test_dependency_matcher_pattern_validation(en_vocab): pattern2 = copy.deepcopy(pattern) pattern2[1]["RIGHT_ID"] = "fox" matcher.add("FOUNDED", [pattern2]) + # invalid key + with pytest.warns(UserWarning): + pattern2 = copy.deepcopy(pattern) + pattern2[1]["FOO"] = "BAR" + matcher.add("FOUNDED", [pattern2]) def test_dependency_matcher_callback(en_vocab, doc): diff --git a/spacy/tests/package/test_requirements.py b/spacy/tests/package/test_requirements.py index fab1e8218..ff07c5b45 100644 --- a/spacy/tests/package/test_requirements.py +++ b/spacy/tests/package/test_requirements.py @@ -4,8 +4,8 @@ from pathlib import Path def test_build_dependencies(): # Check that library requirements are pinned exactly the same across different setup files. - # TODO: correct checks for numpy rather than ignoring libs_ignore_requirements = [ + "numpy", "pytest", "pytest-timeout", "mock", @@ -23,6 +23,7 @@ def test_build_dependencies(): ] # ignore language-specific packages that shouldn't be installed by all libs_ignore_setup = [ + "numpy", "fugashi", "natto-py", "pythainlp", diff --git a/spacy/tests/test_cli.py b/spacy/tests/test_cli.py index 8e1c9ca32..86451317b 100644 --- a/spacy/tests/test_cli.py +++ b/spacy/tests/test_cli.py @@ -1,31 +1,19 @@ import math import os -import time from collections import Counter from pathlib import Path from typing import Any, Dict, List, Tuple -import numpy import pytest import srsly from click import NoSuchOption from packaging.specifiers import SpecifierSet -from thinc.api import Config, ConfigValidationError +from thinc.api import Config import spacy from spacy import about from spacy.cli import info -from spacy.cli._util import ( - download_file, - is_subpath_of, - load_project_config, - parse_config_overrides, - string_to_list, - substitute_project_variables, - upload_file, - validate_project_commands, - walk_directory, -) +from spacy.cli._util import parse_config_overrides, string_to_list, walk_directory from spacy.cli.apply import apply from spacy.cli.debug_data import ( _compile_gold, @@ -43,13 +31,11 @@ from spacy.cli.find_threshold import find_threshold from spacy.cli.init_config import RECOMMENDATIONS, fill_config, init_config from spacy.cli.init_pipeline import _init_labels from spacy.cli.package import _is_permitted_package_name, get_third_party_dependencies -from spacy.cli.project.remote_storage import RemoteStorage -from spacy.cli.project.run import _check_requirements from spacy.cli.validate import get_model_pkgs from spacy.lang.en import English from spacy.lang.nl import Dutch from spacy.language import Language -from spacy.schemas import ProjectConfigSchema, RecommendationSchema, validate +from spacy.schemas import RecommendationSchema from spacy.tokens import Doc, DocBin from spacy.tokens.span import Span from spacy.training import Example, docs_to_json, offsets_to_biluo_tags @@ -134,25 +120,6 @@ def test_issue7055(): assert "model" in filled_cfg["components"]["ner"] -@pytest.mark.issue(11235) -def test_issue11235(): - """ - Test that the cli handles interpolation in the directory names correctly when loading project config. - """ - lang_var = "en" - variables = {"lang": lang_var} - commands = [{"name": "x", "script": ["hello ${vars.lang}"]}] - directories = ["cfg", "${vars.lang}_model"] - project = {"commands": commands, "vars": variables, "directories": directories} - with make_tempdir() as d: - srsly.write_yaml(d / "project.yml", project) - cfg = load_project_config(d) - # Check that the directories are interpolated and created correctly - assert os.path.exists(d / "cfg") - assert os.path.exists(d / f"{lang_var}_model") - assert cfg["commands"][0]["script"][0] == f"hello {lang_var}" - - @pytest.mark.issue(12566) @pytest.mark.parametrize( "factory,output_file", @@ -443,136 +410,6 @@ def test_cli_converters_conll_ner_to_docs(): assert ent.text in ["New York City", "London"] -def test_project_config_validation_full(): - config = { - "vars": {"some_var": 20}, - "directories": ["assets", "configs", "corpus", "scripts", "training"], - "assets": [ - { - "dest": "x", - "extra": True, - "url": "https://example.com", - "checksum": "63373dd656daa1fd3043ce166a59474c", - }, - { - "dest": "y", - "git": { - "repo": "https://github.com/example/repo", - "branch": "develop", - "path": "y", - }, - }, - { - "dest": "z", - "extra": False, - "url": "https://example.com", - "checksum": "63373dd656daa1fd3043ce166a59474c", - }, - ], - "commands": [ - { - "name": "train", - "help": "Train a model", - "script": ["python -m spacy train config.cfg -o training"], - "deps": ["config.cfg", "corpus/training.spcy"], - "outputs": ["training/model-best"], - }, - {"name": "test", "script": ["pytest", "custom.py"], "no_skip": True}, - ], - "workflows": {"all": ["train", "test"], "train": ["train"]}, - } - errors = validate(ProjectConfigSchema, config) - assert not errors - - -@pytest.mark.parametrize( - "config", - [ - {"commands": [{"name": "a"}, {"name": "a"}]}, - {"commands": [{"name": "a"}], "workflows": {"a": []}}, - {"commands": [{"name": "a"}], "workflows": {"b": ["c"]}}, - ], -) -def test_project_config_validation1(config): - with pytest.raises(SystemExit): - validate_project_commands(config) - - -@pytest.mark.parametrize( - "config,n_errors", - [ - ({"commands": {"a": []}}, 1), - ({"commands": [{"help": "..."}]}, 1), - ({"commands": [{"name": "a", "extra": "b"}]}, 1), - ({"commands": [{"extra": "b"}]}, 2), - ({"commands": [{"name": "a", "deps": [123]}]}, 1), - ], -) -def test_project_config_validation2(config, n_errors): - errors = validate(ProjectConfigSchema, config) - assert len(errors) == n_errors - - -@pytest.mark.parametrize( - "int_value", - [10, pytest.param("10", marks=pytest.mark.xfail)], -) -def test_project_config_interpolation(int_value): - variables = {"a": int_value, "b": {"c": "foo", "d": True}} - commands = [ - {"name": "x", "script": ["hello ${vars.a} ${vars.b.c}"]}, - {"name": "y", "script": ["${vars.b.c} ${vars.b.d}"]}, - ] - project = {"commands": commands, "vars": variables} - with make_tempdir() as d: - srsly.write_yaml(d / "project.yml", project) - cfg = load_project_config(d) - assert type(cfg) == dict - assert type(cfg["commands"]) == list - assert cfg["commands"][0]["script"][0] == "hello 10 foo" - assert cfg["commands"][1]["script"][0] == "foo true" - commands = [{"name": "x", "script": ["hello ${vars.a} ${vars.b.e}"]}] - project = {"commands": commands, "vars": variables} - with pytest.raises(ConfigValidationError): - substitute_project_variables(project) - - -@pytest.mark.parametrize( - "greeting", - [342, "everyone", "tout le monde", pytest.param("42", marks=pytest.mark.xfail)], -) -def test_project_config_interpolation_override(greeting): - variables = {"a": "world"} - commands = [ - {"name": "x", "script": ["hello ${vars.a}"]}, - ] - overrides = {"vars.a": greeting} - project = {"commands": commands, "vars": variables} - with make_tempdir() as d: - srsly.write_yaml(d / "project.yml", project) - cfg = load_project_config(d, overrides=overrides) - assert type(cfg) == dict - assert type(cfg["commands"]) == list - assert cfg["commands"][0]["script"][0] == f"hello {greeting}" - - -def test_project_config_interpolation_env(): - variables = {"a": 10} - env_var = "SPACY_TEST_FOO" - env_vars = {"foo": env_var} - commands = [{"name": "x", "script": ["hello ${vars.a} ${env.foo}"]}] - project = {"commands": commands, "vars": variables, "env": env_vars} - with make_tempdir() as d: - srsly.write_yaml(d / "project.yml", project) - cfg = load_project_config(d) - assert cfg["commands"][0]["script"][0] == "hello 10 " - os.environ[env_var] = "123" - with make_tempdir() as d: - srsly.write_yaml(d / "project.yml", project) - cfg = load_project_config(d) - assert cfg["commands"][0]["script"][0] == "hello 10 123" - - @pytest.mark.parametrize( "args,expected", [ @@ -782,21 +619,6 @@ def test_get_third_party_dependencies(): get_third_party_dependencies(nlp.config) -@pytest.mark.parametrize( - "parent,child,expected", - [ - ("/tmp", "/tmp", True), - ("/tmp", "/", False), - ("/tmp", "/tmp/subdir", True), - ("/tmp", "/tmpdir", False), - ("/tmp", "/tmp/subdir/..", True), - ("/tmp", "/tmp/..", False), - ], -) -def test_is_subpath_of(parent, child, expected): - assert is_subpath_of(parent, child) == expected - - @pytest.mark.slow @pytest.mark.parametrize( "factory_name,pipe_name", @@ -1042,60 +864,6 @@ def test_applycli_user_data(): assert result[0]._.ext == val -def test_local_remote_storage(): - with make_tempdir() as d: - filename = "a.txt" - - content_hashes = ("aaaa", "cccc", "bbbb") - for i, content_hash in enumerate(content_hashes): - # make sure that each subsequent file has a later timestamp - if i > 0: - time.sleep(1) - content = f"{content_hash} content" - loc_file = d / "root" / filename - if not loc_file.parent.exists(): - loc_file.parent.mkdir(parents=True) - with loc_file.open(mode="w") as file_: - file_.write(content) - - # push first version to remote storage - remote = RemoteStorage(d / "root", str(d / "remote")) - remote.push(filename, "aaaa", content_hash) - - # retrieve with full hashes - loc_file.unlink() - remote.pull(filename, command_hash="aaaa", content_hash=content_hash) - with loc_file.open(mode="r") as file_: - assert file_.read() == content - - # retrieve with command hash - loc_file.unlink() - remote.pull(filename, command_hash="aaaa") - with loc_file.open(mode="r") as file_: - assert file_.read() == content - - # retrieve with content hash - loc_file.unlink() - remote.pull(filename, content_hash=content_hash) - with loc_file.open(mode="r") as file_: - assert file_.read() == content - - # retrieve with no hashes - loc_file.unlink() - remote.pull(filename) - with loc_file.open(mode="r") as file_: - assert file_.read() == content - - -def test_local_remote_storage_pull_missing(): - # pulling from a non-existent remote pulls nothing gracefully - with make_tempdir() as d: - filename = "a.txt" - remote = RemoteStorage(d / "root", str(d / "remote")) - assert remote.pull(filename, command_hash="aaaa") is None - assert remote.pull(filename) is None - - def test_cli_find_threshold(capsys): def make_examples(nlp: Language) -> List[Example]: docs: List[Example] = [] @@ -1206,63 +974,6 @@ def test_cli_find_threshold(capsys): ) -@pytest.mark.filterwarnings("ignore::DeprecationWarning") -@pytest.mark.parametrize( - "reqs,output", - [ - [ - """ - spacy - - # comment - - thinc""", - (False, False), - ], - [ - """# comment - --some-flag - spacy""", - (False, False), - ], - [ - """# comment - --some-flag - spacy; python_version >= '3.6'""", - (False, False), - ], - [ - """# comment - spacyunknowndoesnotexist12345""", - (True, False), - ], - ], -) -def test_project_check_requirements(reqs, output): - import pkg_resources - - # excessive guard against unlikely package name - try: - pkg_resources.require("spacyunknowndoesnotexist12345") - except pkg_resources.DistributionNotFound: - assert output == _check_requirements([req.strip() for req in reqs.split("\n")]) - - -def test_upload_download_local_file(): - with make_tempdir() as d1, make_tempdir() as d2: - filename = "f.txt" - content = "content" - local_file = d1 / filename - remote_file = d2 / filename - with local_file.open(mode="w") as file_: - file_.write(content) - upload_file(local_file, remote_file) - local_file.unlink() - download_file(remote_file, local_file) - with local_file.open(mode="r") as file_: - assert file_.read() == content - - def test_walk_directory(): with make_tempdir() as d: files = [ diff --git a/spacy/tests/test_cli_app.py b/spacy/tests/test_cli_app.py index e6f3b5912..108fbf90d 100644 --- a/spacy/tests/test_cli_app.py +++ b/spacy/tests/test_cli_app.py @@ -1,4 +1,5 @@ import os +import sys from pathlib import Path import pytest @@ -213,6 +214,9 @@ def test_project_clone(options): assert (out / "README.md").is_file() +@pytest.mark.skipif( + sys.version_info >= (3, 12), reason="Python 3.12+ not supported for remotes" +) def test_project_push_pull(project_dir): proj = dict(SAMPLE_PROJECT) remote = "xyz" diff --git a/spacy/tokenizer.pyx b/spacy/tokenizer.pyx index 8fc95bea0..a239eaf45 100644 --- a/spacy/tokenizer.pyx +++ b/spacy/tokenizer.pyx @@ -1,4 +1,4 @@ -# cython: embedsignature=True, profile=True, binding=True +# cython: embedsignature=True, binding=True cimport cython from cymem.cymem cimport Pool from cython.operator cimport dereference as deref diff --git a/spacy/tokens/_retokenize.pyx b/spacy/tokens/_retokenize.pyx index f28d2e088..b0e4ff85c 100644 --- a/spacy/tokens/_retokenize.pyx +++ b/spacy/tokens/_retokenize.pyx @@ -1,4 +1,4 @@ -# cython: infer_types=True, bounds_check=False, profile=True +# cython: infer_types=True, bounds_check=False from cymem.cymem cimport Pool from libc.string cimport memset diff --git a/spacy/tokens/doc.pyi b/spacy/tokens/doc.pyi index 00c7a9d07..55222f8aa 100644 --- a/spacy/tokens/doc.pyi +++ b/spacy/tokens/doc.pyi @@ -8,6 +8,7 @@ from typing import ( List, Optional, Protocol, + Sequence, Tuple, Union, overload, @@ -134,7 +135,12 @@ class Doc: def text(self) -> str: ... @property def text_with_ws(self) -> str: ... - ents: Tuple[Span] + # Ideally the getter would output Tuple[Span] + # see https://github.com/python/mypy/issues/3004 + @property + def ents(self) -> Sequence[Span]: ... + @ents.setter + def ents(self, value: Sequence[Span]) -> None: ... def set_ents( self, entities: List[Span], diff --git a/spacy/tokens/doc.pyx b/spacy/tokens/doc.pyx index 8fc2c4b3c..745eb5ff3 100644 --- a/spacy/tokens/doc.pyx +++ b/spacy/tokens/doc.pyx @@ -1,4 +1,4 @@ -# cython: infer_types=True, bounds_check=False, profile=True +# cython: infer_types=True, bounds_check=False from typing import Set cimport cython diff --git a/spacy/tokens/graph.pyx b/spacy/tokens/graph.pyx index 1cbec09f4..6c4ce6ce3 100644 --- a/spacy/tokens/graph.pyx +++ b/spacy/tokens/graph.pyx @@ -1,4 +1,5 @@ # cython: infer_types=True, cdivision=True, boundscheck=False, binding=True +# cython: profile=False from typing import Generator, List, Tuple cimport cython diff --git a/spacy/tokens/morphanalysis.pyx b/spacy/tokens/morphanalysis.pyx index ba7c638f6..ea5d07fa4 100644 --- a/spacy/tokens/morphanalysis.pyx +++ b/spacy/tokens/morphanalysis.pyx @@ -1,3 +1,4 @@ +# cython: profile=False cimport numpy as np from libc.string cimport memset diff --git a/spacy/tokens/span.pyx b/spacy/tokens/span.pyx index cf90e416b..af3ba8db5 100644 --- a/spacy/tokens/span.pyx +++ b/spacy/tokens/span.pyx @@ -1,3 +1,4 @@ +# cython: profile=False cimport numpy as np import copy diff --git a/spacy/tokens/span_group.pyx b/spacy/tokens/span_group.pyx index d245a1425..257c907bc 100644 --- a/spacy/tokens/span_group.pyx +++ b/spacy/tokens/span_group.pyx @@ -1,3 +1,4 @@ +# cython: profile=False import struct import weakref from copy import deepcopy diff --git a/spacy/tokens/token.pyx b/spacy/tokens/token.pyx index de967ba25..9fd4118d6 100644 --- a/spacy/tokens/token.pyx +++ b/spacy/tokens/token.pyx @@ -1,4 +1,5 @@ # cython: infer_types=True +# cython: profile=False # Compiler crashes on memory view coercion without this. Should report bug. cimport numpy as np diff --git a/spacy/training/align.pyx b/spacy/training/align.pyx index 79fec73c4..c68110e30 100644 --- a/spacy/training/align.pyx +++ b/spacy/training/align.pyx @@ -1,3 +1,4 @@ +# cython: profile=False import re from itertools import chain from typing import List, Tuple diff --git a/spacy/training/alignment_array.pyx b/spacy/training/alignment_array.pyx index b0be1512b..f0eb5cf39 100644 --- a/spacy/training/alignment_array.pyx +++ b/spacy/training/alignment_array.pyx @@ -1,3 +1,4 @@ +# cython: profile=False from typing import List import numpy diff --git a/spacy/training/corpus.py b/spacy/training/corpus.py index 6037c15e3..5cc2733a5 100644 --- a/spacy/training/corpus.py +++ b/spacy/training/corpus.py @@ -63,7 +63,7 @@ def create_plain_text_reader( path: Optional[Path], min_length: int = 0, max_length: int = 0, -) -> Callable[["Language"], Iterable[Doc]]: +) -> Callable[["Language"], Iterable[Example]]: """Iterate Example objects from a file or directory of plain text UTF-8 files with one line per doc. diff --git a/spacy/training/example.pyi b/spacy/training/example.pyi new file mode 100644 index 000000000..06639d70c --- /dev/null +++ b/spacy/training/example.pyi @@ -0,0 +1,66 @@ +from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple + +from ..tokens import Doc, Span +from ..vocab import Vocab +from .alignment import Alignment + +def annotations_to_doc( + vocab: Vocab, + tok_annot: Dict[str, Any], + doc_annot: Dict[str, Any], +) -> Doc: ... +def validate_examples( + examples: Iterable[Example], + method: str, +) -> None: ... +def validate_get_examples( + get_examples: Callable[[], Iterable[Example]], + method: str, +): ... + +class Example: + x: Doc + y: Doc + + def __init__( + self, + predicted: Doc, + reference: Doc, + *, + alignment: Optional[Alignment] = None, + ): ... + def __len__(self) -> int: ... + @property + def predicted(self) -> Doc: ... + @predicted.setter + def predicted(self, doc: Doc) -> None: ... + @property + def reference(self) -> Doc: ... + @reference.setter + def reference(self, doc: Doc) -> None: ... + def copy(self) -> Example: ... + @classmethod + def from_dict(cls, predicted: Doc, example_dict: Dict[str, Any]) -> Example: ... + @property + def alignment(self) -> Alignment: ... + def get_aligned(self, field: str, as_string=False): ... + def get_aligned_parse(self, projectivize=True): ... + def get_aligned_sent_starts(self): ... + def get_aligned_spans_x2y( + self, x_spans: Iterable[Span], allow_overlap=False + ) -> List[Span]: ... + def get_aligned_spans_y2x( + self, y_spans: Iterable[Span], allow_overlap=False + ) -> List[Span]: ... + def get_aligned_ents_and_ner(self) -> Tuple[List[Span], List[str]]: ... + def get_aligned_ner(self) -> List[str]: ... + def get_matching_ents(self, check_label: bool = True) -> List[Span]: ... + def to_dict(self) -> Dict[str, Any]: ... + def split_sents(self) -> List[Example]: ... + @property + def text(self) -> str: ... + def __str__(self) -> str: ... + def __repr__(self) -> str: ... + +def _parse_example_dict_data(example_dict): ... +def _fix_legacy_dict_data(example_dict): ... diff --git a/spacy/training/example.pyx b/spacy/training/example.pyx index 3f0cf5ade..abdcecf71 100644 --- a/spacy/training/example.pyx +++ b/spacy/training/example.pyx @@ -1,3 +1,4 @@ +# cython: profile=False from collections.abc import Iterable as IterableInstance import numpy diff --git a/spacy/training/gold_io.pyx b/spacy/training/gold_io.pyx index 2fc36e41f..afbdf4631 100644 --- a/spacy/training/gold_io.pyx +++ b/spacy/training/gold_io.pyx @@ -1,3 +1,4 @@ +# cython: profile=False import warnings import srsly diff --git a/spacy/training/initialize.py b/spacy/training/initialize.py index 82d4ebf24..062170221 100644 --- a/spacy/training/initialize.py +++ b/spacy/training/initialize.py @@ -302,7 +302,7 @@ def read_vectors( shape = (truncate_vectors, shape[1]) vectors_data = numpy.zeros(shape=shape, dtype="f") vectors_keys = [] - for i, line in enumerate(tqdm.tqdm(f)): + for i, line in enumerate(tqdm.tqdm(f, disable=None)): line = line.rstrip() pieces = line.rsplit(" ", vectors_data.shape[1]) word = pieces.pop(0) diff --git a/spacy/typedefs.pyx b/spacy/typedefs.pyx index e69de29bb..61bf62038 100644 --- a/spacy/typedefs.pyx +++ b/spacy/typedefs.pyx @@ -0,0 +1 @@ +# cython: profile=False diff --git a/spacy/util.py b/spacy/util.py index 79fcb8b8d..8464e411f 100644 --- a/spacy/util.py +++ b/spacy/util.py @@ -101,7 +101,6 @@ logger.addHandler(logger_stream_handler) class ENV_VARS: CONFIG_OVERRIDES = "SPACY_CONFIG_OVERRIDES" - PROJECT_USE_GIT_VERSION = "SPACY_PROJECT_USE_GIT_VERSION" class registry(thinc.registry): @@ -119,6 +118,7 @@ class registry(thinc.registry): augmenters = catalogue.create("spacy", "augmenters", entry_points=True) loggers = catalogue.create("spacy", "loggers", entry_points=True) scorers = catalogue.create("spacy", "scorers", entry_points=True) + vectors = catalogue.create("spacy", "vectors", entry_points=True) # These are factories registered via third-party packages and the # spacy_factories entry point. This registry only exists so we can easily # load them via the entry points. The "true" factories are added via the @@ -974,23 +974,12 @@ def replace_model_node(model: Model, target: Model, replacement: Model) -> None: def split_command(command: str) -> List[str]: """Split a string command using shlex. Handles platform compatibility. - command (str) : The command to split RETURNS (List[str]): The split command. """ return shlex.split(command, posix=not is_windows) -def join_command(command: List[str]) -> str: - """Join a command using shlex. shlex.join is only available for Python 3.8+, - so we're using a workaround here. - - command (List[str]): The command to join. - RETURNS (str): The joined command - """ - return " ".join(shlex.quote(cmd) for cmd in command) - - def run_command( command: Union[str, List[str]], *, @@ -999,7 +988,6 @@ def run_command( ) -> subprocess.CompletedProcess: """Run a command on the command line as a subprocess. If the subprocess returns a non-zero exit code, a system exit is performed. - command (str / List[str]): The command. If provided as a string, the string will be split using shlex.split. stdin (Optional[Any]): stdin to read from or None. @@ -1050,7 +1038,6 @@ def run_command( @contextmanager def working_dir(path: Union[str, Path]) -> Iterator[Path]: """Change current working directory and returns to previous on exit. - path (str / Path): The directory to navigate to. YIELDS (Path): The absolute path to the current working directory. This should be used if the block needs to perform actions within the working @@ -1069,7 +1056,6 @@ def working_dir(path: Union[str, Path]) -> Iterator[Path]: def make_tempdir() -> Generator[Path, None, None]: """Execute a block in a temporary directory and remove the directory and its contents at the end of the with block. - YIELDS (Path): The path of the temp directory. """ d = Path(tempfile.mkdtemp()) @@ -1082,20 +1068,14 @@ def make_tempdir() -> Generator[Path, None, None]: rmfunc(path) try: - shutil.rmtree(str(d), onerror=force_remove) + if sys.version_info >= (3, 12): + shutil.rmtree(str(d), onexc=force_remove) + else: + shutil.rmtree(str(d), onerror=force_remove) except PermissionError as e: warnings.warn(Warnings.W091.format(dir=d, msg=e)) -def is_cwd(path: Union[Path, str]) -> bool: - """Check whether a path is the current working directory. - - path (Union[Path, str]): The directory path. - RETURNS (bool): Whether the path is the current working directory. - """ - return str(Path(path).resolve()).lower() == str(Path.cwd().resolve()).lower() - - def is_in_jupyter() -> bool: """Check if user is running spaCy from a Jupyter notebook by detecting the IPython kernel. Mainly used for the displaCy visualizer. diff --git a/spacy/vectors.pyx b/spacy/vectors.pyx index a88f380f9..6ff99bb59 100644 --- a/spacy/vectors.pyx +++ b/spacy/vectors.pyx @@ -1,3 +1,6 @@ +# cython: infer_types=True, binding=True +from typing import Callable + from cython.operator cimport dereference as deref from libc.stdint cimport uint32_t, uint64_t from libcpp.set cimport set as cppset @@ -5,7 +8,8 @@ from murmurhash.mrmr cimport hash128_x64 import warnings from enum import Enum -from typing import cast +from pathlib import Path +from typing import TYPE_CHECKING, Union, cast import numpy import srsly @@ -21,6 +25,9 @@ from .attrs import IDS from .errors import Errors, Warnings from .strings import get_string_id +if TYPE_CHECKING: + from .vocab import Vocab # noqa: F401 # no-cython-lint + def unpickle_vectors(bytes_data): return Vectors().from_bytes(bytes_data) @@ -35,7 +42,71 @@ class Mode(str, Enum): return list(cls.__members__.keys()) -cdef class Vectors: +cdef class BaseVectors: + def __init__(self, *, strings=None): + # Make sure abstract BaseVectors is not instantiated. + if self.__class__ == BaseVectors: + raise TypeError( + Errors.E1046.format(cls_name=self.__class__.__name__) + ) + + def __getitem__(self, key): + raise NotImplementedError + + def __contains__(self, key): + raise NotImplementedError + + def is_full(self): + raise NotImplementedError + + def get_batch(self, keys): + raise NotImplementedError + + @property + def shape(self): + raise NotImplementedError + + def __len__(self): + raise NotImplementedError + + @property + def vectors_length(self): + raise NotImplementedError + + @property + def size(self): + raise NotImplementedError + + def add(self, key, *, vector=None): + raise NotImplementedError + + def to_ops(self, ops: Ops): + pass + + # add dummy methods for to_bytes, from_bytes, to_disk and from_disk to + # allow serialization + def to_bytes(self, **kwargs): + return b"" + + def from_bytes(self, data: bytes, **kwargs): + return self + + def to_disk(self, path: Union[str, Path], **kwargs): + return None + + def from_disk(self, path: Union[str, Path], **kwargs): + return self + + +@util.registry.vectors("spacy.Vectors.v1") +def create_mode_vectors() -> Callable[["Vocab"], BaseVectors]: + def vectors_factory(vocab: "Vocab") -> BaseVectors: + return Vectors(strings=vocab.strings) + + return vectors_factory + + +cdef class Vectors(BaseVectors): """Store, save and load word vectors. Vectors data is kept in the vectors.data attribute, which should be an diff --git a/spacy/vocab.pyx b/spacy/vocab.pyx index d1edc8533..4004a70e0 100644 --- a/spacy/vocab.pyx +++ b/spacy/vocab.pyx @@ -1,4 +1,3 @@ -# cython: profile=True import functools import numpy @@ -94,8 +93,9 @@ cdef class Vocab: return self._vectors def __set__(self, vectors): - for s in vectors.strings: - self.strings.add(s) + if hasattr(vectors, "strings"): + for s in vectors.strings: + self.strings.add(s) self._vectors = vectors self._vectors.strings = self.strings @@ -193,7 +193,7 @@ cdef class Vocab: lex = mem.alloc(1, sizeof(LexemeC)) lex.orth = self.strings.add(string) lex.length = len(string) - if self.vectors is not None: + if self.vectors is not None and hasattr(self.vectors, "key2row"): lex.id = self.vectors.key2row.get(lex.orth, OOV_RANK) else: lex.id = OOV_RANK @@ -289,12 +289,17 @@ cdef class Vocab: @property def vectors_length(self): - return self.vectors.shape[1] + if hasattr(self.vectors, "shape"): + return self.vectors.shape[1] + else: + return -1 def reset_vectors(self, *, width=None, shape=None): """Drop the current vector table. Because all vectors must be the same width, you have to call this to change the size of the vectors. """ + if not isinstance(self.vectors, Vectors): + raise ValueError(Errors.E849.format(method="reset_vectors", vectors_type=type(self.vectors))) if width is not None and shape is not None: raise ValueError(Errors.E065.format(width=width, shape=shape)) elif shape is not None: @@ -304,6 +309,8 @@ cdef class Vocab: self.vectors = Vectors(strings=self.strings, shape=(self.vectors.shape[0], width)) def deduplicate_vectors(self): + if not isinstance(self.vectors, Vectors): + raise ValueError(Errors.E849.format(method="deduplicate_vectors", vectors_type=type(self.vectors))) if self.vectors.mode != VectorsMode.default: raise ValueError(Errors.E858.format( mode=self.vectors.mode, @@ -357,6 +364,8 @@ cdef class Vocab: DOCS: https://spacy.io/api/vocab#prune_vectors """ + if not isinstance(self.vectors, Vectors): + raise ValueError(Errors.E849.format(method="prune_vectors", vectors_type=type(self.vectors))) if self.vectors.mode != VectorsMode.default: raise ValueError(Errors.E858.format( mode=self.vectors.mode, diff --git a/website/docs/api/architectures.mdx b/website/docs/api/architectures.mdx index a292194e9..0ec915bd3 100644 --- a/website/docs/api/architectures.mdx +++ b/website/docs/api/architectures.mdx @@ -481,6 +481,286 @@ The other arguments are shared between all versions. +## Curated Transformer architectures {id="curated-trf",source="https://github.com/explosion/spacy-curated-transformers/blob/main/spacy_curated_transformers/models/architectures.py"} + +The following architectures are provided by the package +[`spacy-curated-transformers`](https://github.com/explosion/spacy-curated-transformers). +See the [usage documentation](/usage/embeddings-transformers#transformers) for +how to integrate the architectures into your training config. + +When loading the model +[from the Hugging Face Hub](/api/curatedtransformer#hf_trfencoder_loader), the +model config's parameters must be same as the hyperparameters used by the +pre-trained model. The +[`init fill-curated-transformer`](/api/cli#init-fill-curated-transformer) CLI +command can be used to automatically fill in these values. + +### spacy-curated-transformers.AlbertTransformer.v1 + +Construct an ALBERT transformer model. + +| Name | Description | +| ------------------------------ | ---------------------------------------------------------------------------------------- | +| `vocab_size` | Vocabulary size. ~~int~~ | +| `with_spans` | Callback that constructs a span generator model. ~~Callable~~ | +| `piece_encoder` | The piece encoder to segment input tokens. ~~Model~~ | +| `attention_probs_dropout_prob` | Dropout probability of the self-attention layers. ~~float~~ | +| `embedding_width` | Width of the embedding representations. ~~int~~ | +| `hidden_act` | Activation used by the point-wise feed-forward layers. ~~str~~ | +| `hidden_dropout_prob` | Dropout probability of the point-wise feed-forward and embedding layers. ~~float~~ | +| `hidden_width` | Width of the final representations. ~~int~~ | +| `intermediate_width` | Width of the intermediate projection layer in the point-wise feed-forward layer. ~~int~~ | +| `layer_norm_eps` | Epsilon for layer normalization. ~~float~~ | +| `max_position_embeddings` | Maximum length of position embeddings. ~~int~~ | +| `model_max_length` | Maximum length of model inputs. ~~int~~ | +| `num_attention_heads` | Number of self-attention heads. ~~int~~ | +| `num_hidden_groups` | Number of layer groups whose constituents share parameters. ~~int~~ | +| `num_hidden_layers` | Number of hidden layers. ~~int~~ | +| `padding_idx` | Index of the padding meta-token. ~~int~~ | +| `type_vocab_size` | Type vocabulary size. ~~int~~ | +| `mixed_precision` | Use mixed-precision training. ~~bool~~ | +| `grad_scaler_config` | Configuration passed to the PyTorch gradient scaler. ~~dict~~ | +| **CREATES** | The model using the architecture ~~Model~~ | + +### spacy-curated-transformers.BertTransformer.v1 + +Construct a BERT transformer model. + +| Name | Description | +| ------------------------------ | ---------------------------------------------------------------------------------------- | +| `vocab_size` | Vocabulary size. ~~int~~ | +| `with_spans` | Callback that constructs a span generator model. ~~Callable~~ | +| `piece_encoder` | The piece encoder to segment input tokens. ~~Model~~ | +| `attention_probs_dropout_prob` | Dropout probability of the self-attention layers. ~~float~~ | +| `hidden_act` | Activation used by the point-wise feed-forward layers. ~~str~~ | +| `hidden_dropout_prob` | Dropout probability of the point-wise feed-forward and embedding layers. ~~float~~ | +| `hidden_width` | Width of the final representations. ~~int~~ | +| `intermediate_width` | Width of the intermediate projection layer in the point-wise feed-forward layer. ~~int~~ | +| `layer_norm_eps` | Epsilon for layer normalization. ~~float~~ | +| `max_position_embeddings` | Maximum length of position embeddings. ~~int~~ | +| `model_max_length` | Maximum length of model inputs. ~~int~~ | +| `num_attention_heads` | Number of self-attention heads. ~~int~~ | +| `num_hidden_layers` | Number of hidden layers. ~~int~~ | +| `padding_idx` | Index of the padding meta-token. ~~int~~ | +| `type_vocab_size` | Type vocabulary size. ~~int~~ | +| `mixed_precision` | Use mixed-precision training. ~~bool~~ | +| `grad_scaler_config` | Configuration passed to the PyTorch gradient scaler. ~~dict~~ | +| **CREATES** | The model using the architecture ~~Model~~ | + +### spacy-curated-transformers.CamembertTransformer.v1 + +Construct a CamemBERT transformer model. + +| Name | Description | +| ------------------------------ | ---------------------------------------------------------------------------------------- | +| `vocab_size` | Vocabulary size. ~~int~~ | +| `with_spans` | Callback that constructs a span generator model. ~~Callable~~ | +| `piece_encoder` | The piece encoder to segment input tokens. ~~Model~~ | +| `attention_probs_dropout_prob` | Dropout probability of the self-attention layers. ~~float~~ | +| `hidden_act` | Activation used by the point-wise feed-forward layers. ~~str~~ | +| `hidden_dropout_prob` | Dropout probability of the point-wise feed-forward and embedding layers. ~~float~~ | +| `hidden_width` | Width of the final representations. ~~int~~ | +| `intermediate_width` | Width of the intermediate projection layer in the point-wise feed-forward layer. ~~int~~ | +| `layer_norm_eps` | Epsilon for layer normalization. ~~float~~ | +| `max_position_embeddings` | Maximum length of position embeddings. ~~int~~ | +| `model_max_length` | Maximum length of model inputs. ~~int~~ | +| `num_attention_heads` | Number of self-attention heads. ~~int~~ | +| `num_hidden_layers` | Number of hidden layers. ~~int~~ | +| `padding_idx` | Index of the padding meta-token. ~~int~~ | +| `type_vocab_size` | Type vocabulary size. ~~int~~ | +| `mixed_precision` | Use mixed-precision training. ~~bool~~ | +| `grad_scaler_config` | Configuration passed to the PyTorch gradient scaler. ~~dict~~ | +| **CREATES** | The model using the architecture ~~Model~~ | + +### spacy-curated-transformers.RobertaTransformer.v1 + +Construct a RoBERTa transformer model. + +| Name | Description | +| ------------------------------ | ---------------------------------------------------------------------------------------- | +| `vocab_size` | Vocabulary size. ~~int~~ | +| `with_spans` | Callback that constructs a span generator model. ~~Callable~~ | +| `piece_encoder` | The piece encoder to segment input tokens. ~~Model~~ | +| `attention_probs_dropout_prob` | Dropout probability of the self-attention layers. ~~float~~ | +| `hidden_act` | Activation used by the point-wise feed-forward layers. ~~str~~ | +| `hidden_dropout_prob` | Dropout probability of the point-wise feed-forward and embedding layers. ~~float~~ | +| `hidden_width` | Width of the final representations. ~~int~~ | +| `intermediate_width` | Width of the intermediate projection layer in the point-wise feed-forward layer. ~~int~~ | +| `layer_norm_eps` | Epsilon for layer normalization. ~~float~~ | +| `max_position_embeddings` | Maximum length of position embeddings. ~~int~~ | +| `model_max_length` | Maximum length of model inputs. ~~int~~ | +| `num_attention_heads` | Number of self-attention heads. ~~int~~ | +| `num_hidden_layers` | Number of hidden layers. ~~int~~ | +| `padding_idx` | Index of the padding meta-token. ~~int~~ | +| `type_vocab_size` | Type vocabulary size. ~~int~~ | +| `mixed_precision` | Use mixed-precision training. ~~bool~~ | +| `grad_scaler_config` | Configuration passed to the PyTorch gradient scaler. ~~dict~~ | +| **CREATES** | The model using the architecture ~~Model~~ | + +### spacy-curated-transformers.XlmrTransformer.v1 + +Construct a XLM-RoBERTa transformer model. + +| Name | Description | +| ------------------------------ | ---------------------------------------------------------------------------------------- | +| `vocab_size` | Vocabulary size. ~~int~~ | +| `with_spans` | Callback that constructs a span generator model. ~~Callable~~ | +| `piece_encoder` | The piece encoder to segment input tokens. ~~Model~~ | +| `attention_probs_dropout_prob` | Dropout probability of the self-attention layers. ~~float~~ | +| `hidden_act` | Activation used by the point-wise feed-forward layers. ~~str~~ | +| `hidden_dropout_prob` | Dropout probability of the point-wise feed-forward and embedding layers. ~~float~~ | +| `hidden_width` | Width of the final representations. ~~int~~ | +| `intermediate_width` | Width of the intermediate projection layer in the point-wise feed-forward layer. ~~int~~ | +| `layer_norm_eps` | Epsilon for layer normalization. ~~float~~ | +| `max_position_embeddings` | Maximum length of position embeddings. ~~int~~ | +| `model_max_length` | Maximum length of model inputs. ~~int~~ | +| `num_attention_heads` | Number of self-attention heads. ~~int~~ | +| `num_hidden_layers` | Number of hidden layers. ~~int~~ | +| `padding_idx` | Index of the padding meta-token. ~~int~~ | +| `type_vocab_size` | Type vocabulary size. ~~int~~ | +| `mixed_precision` | Use mixed-precision training. ~~bool~~ | +| `grad_scaler_config` | Configuration passed to the PyTorch gradient scaler. ~~dict~~ | +| **CREATES** | The model using the architecture ~~Model~~ | + +### spacy-curated-transformers.ScalarWeight.v1 + +Construct a model that accepts a list of transformer layer outputs and returns a +weighted representation of the same. + +| Name | Description | +| -------------------- | ----------------------------------------------------------------------------- | +| `num_layers` | Number of transformer hidden layers. ~~int~~ | +| `dropout_prob` | Dropout probability. ~~float~~ | +| `mixed_precision` | Use mixed-precision training. ~~bool~~ | +| `grad_scaler_config` | Configuration passed to the PyTorch gradient scaler. ~~dict~~ | +| **CREATES** | The model using the architecture ~~Model[ScalarWeightInT, ScalarWeightOutT]~~ | + +### spacy-curated-transformers.TransformerLayersListener.v1 + +Construct a listener layer that communicates with one or more upstream +Transformer components. This layer extracts the output of the last transformer +layer and performs pooling over the individual pieces of each `Doc` token, +returning their corresponding representations. The upstream name should either +be the wildcard string '\*', or the name of the Transformer component. + +In almost all cases, the wildcard string will suffice as there'll only be one +upstream Transformer component. But in certain situations, e.g: you have +disjoint datasets for certain tasks, or you'd like to use a pre-trained pipeline +but a downstream task requires its own token representations, you could end up +with more than one Transformer component in the pipeline. + +| Name | Description | +| --------------- | ---------------------------------------------------------------------------------------------------------------------- | +| `layers` | The number of layers produced by the upstream transformer component, excluding the embedding layer. ~~int~~ | +| `width` | The width of the vectors produced by the upstream transformer component. ~~int~~ | +| `pooling` | Model that is used to perform pooling over the piece representations. ~~Model~~ | +| `upstream_name` | A string to identify the 'upstream' Transformer component to communicate with. ~~str~~ | +| `grad_factor` | Factor to multiply gradients with. ~~float~~ | +| **CREATES** | A model that returns the relevant vectors from an upstream transformer component. ~~Model[List[Doc], List[Floats2d]]~~ | + +### spacy-curated-transformers.LastTransformerLayerListener.v1 + +Construct a listener layer that communicates with one or more upstream +Transformer components. This layer extracts the output of the last transformer +layer and performs pooling over the individual pieces of each Doc token, +returning their corresponding representations. The upstream name should either +be the wildcard string '\*', or the name of the Transformer component. + +In almost all cases, the wildcard string will suffice as there'll only be one +upstream Transformer component. But in certain situations, e.g: you have +disjoint datasets for certain tasks, or you'd like to use a pre-trained pipeline +but a downstream task requires its own token representations, you could end up +with more than one Transformer component in the pipeline. + +| Name | Description | +| --------------- | ---------------------------------------------------------------------------------------------------------------------- | +| `width` | The width of the vectors produced by the upstream transformer component. ~~int~~ | +| `pooling` | Model that is used to perform pooling over the piece representations. ~~Model~~ | +| `upstream_name` | A string to identify the 'upstream' Transformer component to communicate with. ~~str~~ | +| `grad_factor` | Factor to multiply gradients with. ~~float~~ | +| **CREATES** | A model that returns the relevant vectors from an upstream transformer component. ~~Model[List[Doc], List[Floats2d]]~~ | + +### spacy-curated-transformers.ScalarWeightingListener.v1 + +Construct a listener layer that communicates with one or more upstream +Transformer components. This layer calculates a weighted representation of all +transformer layer outputs and performs pooling over the individual pieces of +each Doc token, returning their corresponding representations. + +Requires its upstream Transformer components to return all layer outputs from +their models. The upstream name should either be the wildcard string '\*', or +the name of the Transformer component. + +In almost all cases, the wildcard string will suffice as there'll only be one +upstream Transformer component. But in certain situations, e.g: you have +disjoint datasets for certain tasks, or you'd like to use a pre-trained pipeline +but a downstream task requires its own token representations, you could end up +with more than one Transformer component in the pipeline. + +| Name | Description | +| --------------- | ---------------------------------------------------------------------------------------------------------------------- | +| `width` | The width of the vectors produced by the upstream transformer component. ~~int~~ | +| `weighting` | Model that is used to perform the weighting of the different layer outputs. ~~Model~~ | +| `pooling` | Model that is used to perform pooling over the piece representations. ~~Model~~ | +| `upstream_name` | A string to identify the 'upstream' Transformer component to communicate with. ~~str~~ | +| `grad_factor` | Factor to multiply gradients with. ~~float~~ | +| **CREATES** | A model that returns the relevant vectors from an upstream transformer component. ~~Model[List[Doc], List[Floats2d]]~~ | + +### spacy-curated-transformers.BertWordpieceEncoder.v1 + +Construct a WordPiece piece encoder model that accepts a list of token sequences +or documents and returns a corresponding list of piece identifiers. This encoder +also splits each token on punctuation characters, as expected by most BERT +models. + +This model must be separately initialized using an appropriate loader. + +### spacy-curated-transformers.ByteBpeEncoder.v1 + +Construct a Byte-BPE piece encoder model that accepts a list of token sequences +or documents and returns a corresponding list of piece identifiers. + +This model must be separately initialized using an appropriate loader. + +### spacy-curated-transformers.CamembertSentencepieceEncoder.v1 + +Construct a SentencePiece piece encoder model that accepts a list of token +sequences or documents and returns a corresponding list of piece identifiers +with CamemBERT post-processing applied. + +This model must be separately initialized using an appropriate loader. + +### spacy-curated-transformers.CharEncoder.v1 + +Construct a character piece encoder model that accepts a list of token sequences +or documents and returns a corresponding list of piece identifiers. + +This model must be separately initialized using an appropriate loader. + +### spacy-curated-transformers.SentencepieceEncoder.v1 + +Construct a SentencePiece piece encoder model that accepts a list of token +sequences or documents and returns a corresponding list of piece identifiers. + +This model must be separately initialized using an appropriate loader. + +### spacy-curated-transformers.WordpieceEncoder.v1 + +Construct a WordPiece piece encoder model that accepts a list of token sequences +or documents and returns a corresponding list of piece identifiers. This encoder +also splits each token on punctuation characters, as expected by most BERT +models. + +This model must be separately initialized using an appropriate loader. + +### spacy-curated-transformers.XlmrSentencepieceEncoder.v1 + +Construct a SentencePiece piece encoder model that accepts a list of token +sequences or documents and returns a corresponding list of piece identifiers +with XLM-RoBERTa post-processing applied. + +This model must be separately initialized using an appropriate loader. + ## Pretraining architectures {id="pretrain",source="spacy/ml/models/multi_task.py"} The spacy `pretrain` command lets you initialize a `Tok2Vec` layer in your diff --git a/website/docs/api/basevectors.mdx b/website/docs/api/basevectors.mdx new file mode 100644 index 000000000..993b9a33e --- /dev/null +++ b/website/docs/api/basevectors.mdx @@ -0,0 +1,143 @@ +--- +title: BaseVectors +teaser: Abstract class for word vectors +tag: class +source: spacy/vectors.pyx +version: 3.7 +--- + +`BaseVectors` is an abstract class to support the development of custom vectors +implementations. + +For use in training with [`StaticVectors`](/api/architectures#staticvectors), +`get_batch` must be implemented. For improved performance, use efficient +batching in `get_batch` and implement `to_ops` to copy the vector data to the +current device. See an example custom implementation for +[BPEmb subword embeddings](/usage/embeddings-transformers#custom-vectors). + +## BaseVectors.\_\_init\_\_ {id="init",tag="method"} + +Create a new vector store. + +| Name | Description | +| -------------- | --------------------------------------------------------------------------------------------------------------------- | +| _keyword-only_ | | +| `strings` | The string store. A new string store is created if one is not provided. Defaults to `None`. ~~Optional[StringStore]~~ | + +## BaseVectors.\_\_getitem\_\_ {id="getitem",tag="method"} + +Get a vector by key. If the key is not found in the table, a `KeyError` should +be raised. + +| Name | Description | +| ----------- | ---------------------------------------------------------------- | +| `key` | The key to get the vector for. ~~Union[int, str]~~ | +| **RETURNS** | The vector for the key. ~~numpy.ndarray[ndim=1, dtype=float32]~~ | + +## BaseVectors.\_\_len\_\_ {id="len",tag="method"} + +Return the number of vectors in the table. + +| Name | Description | +| ----------- | ------------------------------------------- | +| **RETURNS** | The number of vectors in the table. ~~int~~ | + +## BaseVectors.\_\_contains\_\_ {id="contains",tag="method"} + +Check whether there is a vector entry for the given key. + +| Name | Description | +| ----------- | -------------------------------------------- | +| `key` | The key to check. ~~int~~ | +| **RETURNS** | Whether the key has a vector entry. ~~bool~~ | + +## BaseVectors.add {id="add",tag="method"} + +Add a key to the table, if possible. If no keys can be added, return `-1`. + +| Name | Description | +| ----------- | ----------------------------------------------------------------------------------- | +| `key` | The key to add. ~~Union[str, int]~~ | +| **RETURNS** | The row the vector was added to, or `-1` if the operation is not supported. ~~int~~ | + +## BaseVectors.shape {id="shape",tag="property"} + +Get `(rows, dims)` tuples of number of rows and number of dimensions in the +vector table. + +| Name | Description | +| ----------- | ------------------------------------------ | +| **RETURNS** | A `(rows, dims)` pair. ~~Tuple[int, int]~~ | + +## BaseVectors.size {id="size",tag="property"} + +The vector size, i.e. `rows * dims`. + +| Name | Description | +| ----------- | ------------------------ | +| **RETURNS** | The vector size. ~~int~~ | + +## BaseVectors.is_full {id="is_full",tag="property"} + +Whether the vectors table is full and no slots are available for new keys. + +| Name | Description | +| ----------- | ------------------------------------------- | +| **RETURNS** | Whether the vectors table is full. ~~bool~~ | + +## BaseVectors.get_batch {id="get_batch",tag="method",version="3.2"} + +Get the vectors for the provided keys efficiently as a batch. Required to use +the vectors with [`StaticVectors`](/api/architectures#StaticVectors) for +training. + +| Name | Description | +| ------ | --------------------------------------- | +| `keys` | The keys. ~~Iterable[Union[int, str]]~~ | + +## BaseVectors.to_ops {id="to_ops",tag="method"} + +Dummy method. Implement this to change the embedding matrix to use different +Thinc ops. + +| Name | Description | +| ----- | -------------------------------------------------------- | +| `ops` | The Thinc ops to switch the embedding matrix to. ~~Ops~~ | + +## BaseVectors.to_disk {id="to_disk",tag="method"} + +Dummy method to allow serialization. Implement to save vector data with the +pipeline. + +| Name | Description | +| ------ | ------------------------------------------------------------------------------------------------------------------------------------------ | +| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ | + +## BaseVectors.from_disk {id="from_disk",tag="method"} + +Dummy method to allow serialization. Implement to load vector data from a saved +pipeline. + +| Name | Description | +| ----------- | ----------------------------------------------------------------------------------------------- | +| `path` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ | +| **RETURNS** | The modified vectors object. ~~BaseVectors~~ | + +## BaseVectors.to_bytes {id="to_bytes",tag="method"} + +Dummy method to allow serialization. Implement to serialize vector data to a +binary string. + +| Name | Description | +| ----------- | ---------------------------------------------------- | +| **RETURNS** | The serialized form of the vectors object. ~~bytes~~ | + +## BaseVectors.from_bytes {id="from_bytes",tag="method"} + +Dummy method to allow serialization. Implement to load vector data from a binary +string. + +| Name | Description | +| ----------- | ----------------------------------- | +| `data` | The data to load from. ~~bytes~~ | +| **RETURNS** | The vectors object. ~~BaseVectors~~ | diff --git a/website/docs/api/cli.mdx b/website/docs/api/cli.mdx index d63ac6e1d..51cae960b 100644 --- a/website/docs/api/cli.mdx +++ b/website/docs/api/cli.mdx @@ -186,6 +186,29 @@ $ python -m spacy init fill-config [base_path] [output_file] [--diff] | `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ | | **CREATES** | Complete and auto-filled config file for training. | +### init fill-curated-transformer {id="init-fill-curated-transformer",version="3.7",tag="command"} + +Auto-fill the Hugging Face model hyperpameters and loader parameters of a +[Curated Transformer](/api/curatedtransformer) pipeline component in a +[.cfg file](/usage/training#config). The name and revision of the +[Hugging Face model](https://huggingface.co/models) can either be passed as +command-line arguments or read from the +`initialize.components.transformer.encoder_loader` config section. + +```bash +$ python -m spacy init fill-curated-transformer [base_path] [output_file] [--model-name] [--model-revision] [--pipe-name] [--code] +``` + +| Name | Description | +| ------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| `base_path` | Path to base config to fill, e.g. generated by the [quickstart widget](/usage/training#quickstart). ~~Path (positional)~~ | +| `output_file` | Path to output `.cfg` file or "-" to write to stdout so you can pipe it to a file. Defaults to "-" (stdout). ~~Path (positional)~~ | +| `--model-name`, `-m` | Name of the Hugging Face model. Defaults to the model name from the encoder loader config. ~~Optional[str] (option)~~ | +| `--model-revision`, `-r` | Revision of the Hugging Face model. Defaults to `main`. ~~Optional[str] (option)~~ | +| `--pipe-name`, `-n` | Name of the Curated Transformer pipe whose config is to be filled. Defaults to the first transformer pipe. ~~Optional[str] (option)~~ | +| `--code`, `-c` | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ | +| **CREATES** | Complete and auto-filled config file for training. | + ### init vectors {id="init-vectors",version="3",tag="command"} Convert [word vectors](/usage/linguistic-features#vectors-similarity) for use @@ -1041,6 +1064,42 @@ $ python -m spacy debug model ./config.cfg tagger -l "5,15" -DIM -PAR -P0 -P1 -P | overrides | Config parameters to override. Should be options starting with `--` that correspond to the config section and value to override, e.g. `--paths.train ./train.spacy`. ~~Any (option/flag)~~ | | **PRINTS** | Debugging information. | +### debug pieces {id="debug-pieces",version="3.7",tag="command"} + +Analyze word- or sentencepiece stats. + +```bash +$ python -m spacy debug pieces [config_path] [--code] [--name] [overrides] +``` + +| Name | Description | +| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | +| `config_path` | Path to config file. ~~Union[Path, str] (positional)~~ | +| `--code`, `-c` | Path to Python file with additional code to be imported. Allows [registering custom functions](/usage/training#custom-functions) for new architectures. ~~Optional[Path] \(option)~~ | +| `--name`, `-n` | Name of the Curated Transformer pipe whose config is to be filled. Defaults to the first transformer pipe. ~~Optional[str] (option)~~ | +| overrides | Config parameters to override. Should be options starting with `--` that correspond to the config section and value to override, e.g. `--paths.train ./train.spacy`. ~~Any (option/flag)~~ | +| **PRINTS** | Debugging information. | + + + +```bash +$ python -m spacy debug pieces ./config.cfg +``` + +``` +========================= Training corpus statistics ========================= +Median token length: 1.0 +Mean token length: 1.54 +Token length range: [1, 13] + +======================= Development corpus statistics ======================= +Median token length: 1.0 +Mean token length: 1.44 +Token length range: [1, 8] +``` + + + ## train {id="train",tag="command"} Train a pipeline. Expects data in spaCy's @@ -1183,7 +1242,7 @@ skew. To render a sample of dependency parses in a HTML file using the `--displacy-path` argument. ```bash -$ python -m spacy benchmark accuracy [model] [data_path] [--output] [--code] [--gold-preproc] [--gpu-id] [--displacy-path] [--displacy-limit] +$ python -m spacy benchmark accuracy [model] [data_path] [--output] [--code] [--gold-preproc] [--gpu-id] [--displacy-path] [--displacy-limit] [--per-component] [--spans-key] ``` | Name | Description | @@ -1197,6 +1256,7 @@ $ python -m spacy benchmark accuracy [model] [data_path] [--output] [--code] [-- | `--displacy-path`, `-dp` | Directory to output rendered parses as HTML. If not set, no visualizations will be generated. ~~Optional[Path] \(option)~~ | | `--displacy-limit`, `-dl` | Number of parses to generate per file. Defaults to `25`. Keep in mind that a significantly higher number might cause the `.html` files to render slowly. ~~int (option)~~ | | `--per-component`, `-P` 3.6 | Whether to return the scores keyed by component name. Defaults to `False`. ~~bool (flag)~~ | +| `--spans-key`, `-sk` 3.6.2 | Spans key to use when evaluating `Doc.spans`. Defaults to `sc`. ~~str (option)~~ | | `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ | | **CREATES** | Training results and optional metrics and visualizations. | @@ -1484,9 +1544,9 @@ obsolete files is left up to you. Remotes can be defined in the `remotes` section of the [`project.yml`](/usage/projects#project-yml). Under the hood, spaCy uses -[`Pathy`](https://github.com/justindujardin/pathy) to communicate with the -remote storages, so you can use any protocol that `Pathy` supports, including -[S3](https://aws.amazon.com/s3/), +[`cloudpathlib`](https://cloudpathlib.drivendata.org) to communicate with the +remote storages, so you can use any protocol that `cloudpathlib` supports, +including [S3](https://aws.amazon.com/s3/), [Google Cloud Storage](https://cloud.google.com/storage), and the local filesystem, although you may need to install extra dependencies to use certain protocols. diff --git a/website/docs/api/curatedtransformer.mdx b/website/docs/api/curatedtransformer.mdx new file mode 100644 index 000000000..5fdbd86cb --- /dev/null +++ b/website/docs/api/curatedtransformer.mdx @@ -0,0 +1,572 @@ +--- +title: CuratedTransformer +teaser: + Pipeline component for multi-task learning with Curated Transformer models +tag: class +source: github.com/explosion/spacy-curated-transformers/blob/main/spacy_curated_transformers/pipeline/transformer.py +version: 3.7 +api_base_class: /api/pipe +api_string_name: curated_transformer +--- + + + +This component is available via the extension package +[`spacy-curated-transformers`](https://github.com/explosion/spacy-curated-transformers). +It exposes the component via entry points, so if you have the package installed, +using `factory = "curated_transformer"` in your +[training config](/usage/training#config) will work out-of-the-box. + + + +This pipeline component lets you use a curated set of transformer models in your +pipeline. spaCy Curated Transformers currently supports the following model +types: + +- ALBERT +- BERT +- CamemBERT +- RoBERTa +- XLM-RoBERT + +If you want to use another type of model, use +[spacy-transformers](/api/spacy-transformers), which allows you to use all +Hugging Face transformer models with spaCy. + +You will usually connect downstream components to a shared Curated Transformer +pipe using one of the Curated Transformer listener layers. This works similarly +to spaCy's [Tok2Vec](/api/tok2vec), and the +[Tok2VecListener](/api/architectures/#Tok2VecListener) sublayer. The component +assigns the output of the transformer to the `Doc`'s extension attributes. To +access the values, you can use the custom +[`Doc._.trf_data`](#assigned-attributes) attribute. + +For more details, see the [usage documentation](/usage/embeddings-transformers). + +## Assigned Attributes {id="assigned-attributes"} + +The component sets the following +[custom extension attribute](/usage/processing-pipeline#custom-components-attributes): + +| Location | Value | +| ---------------- | -------------------------------------------------------------------------- | +| `Doc._.trf_data` | Curated Transformer outputs for the `Doc` object. ~~DocTransformerOutput~~ | + +## Config and Implementation {id="config"} + +The default config is defined by the pipeline component factory and describes +how the component should be configured. You can override its settings via the +`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your +[`config.cfg` for training](/usage/training#config). See the +[model architectures](/api/architectures#curated-trf) documentation for details +on the curated transformer architectures and their arguments and +hyperparameters. + +> #### Example +> +> ```python +> from spacy_curated_transformers.pipeline.transformer import DEFAULT_CONFIG +> +> nlp.add_pipe("curated_transformer", config=DEFAULT_CONFIG) +> ``` + +| Setting | Description | +| ------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `model` | The Thinc [`Model`](https://thinc.ai/docs/api-model) wrapping the transformer. Defaults to [`XlmrTransformer`](/api/architectures#curated-trf). ~~Model~~ | +| `frozen` | If `True`, the model's weights are frozen and no backpropagation is performed. ~~bool~~ | +| `all_layer_outputs` | If `True`, the model returns the outputs of all the layers. Otherwise, only the output of the last layer is returned. This must be set to `True` if any of the pipe's downstream listeners require the outputs of all transformer layers. ~~bool~~ | + +```python +https://github.com/explosion/spacy-curated-transformers/blob/main/spacy_curated_transformers/pipeline/transformer.py +``` + +## CuratedTransformer.\_\_init\_\_ {id="init",tag="method"} + +> #### Example +> +> ```python +> # Construction via add_pipe with default model +> trf = nlp.add_pipe("curated_transformer") +> +> # Construction via add_pipe with custom config +> config = { +> "model": { +> "@architectures": "spacy-curated-transformers.XlmrTransformer.v1", +> "vocab_size": 250002, +> "num_hidden_layers": 12, +> "hidden_width": 768, +> "piece_encoder": { +> "@architectures": "spacy-curated-transformers.XlmrSentencepieceEncoder.v1" +> } +> } +> } +> trf = nlp.add_pipe("curated_transformer", config=config) +> +> # Construction from class +> from spacy_curated_transformers import CuratedTransformer +> trf = CuratedTransformer(nlp.vocab, model) +> ``` + +Construct a `CuratedTransformer` component. One or more subsequent spaCy +components can use the transformer outputs as features in its model, with +gradients backpropagated to the single shared weights. The activations from the +transformer are saved in the [`Doc._.trf_data`](#assigned-attributes) extension +attribute. You can also provide a callback to set additional annotations. In +your application, you would normally use a shortcut for this and instantiate the +component using its string name and [`nlp.add_pipe`](/api/language#create_pipe). + +| Name | Description | +| ------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `vocab` | The shared vocabulary. ~~Vocab~~ | +| `model` | One of the supported pre-trained transformer models. ~~Model~~ | +| _keyword-only_ | | +| `name` | The component instance name. ~~str~~ | +| `frozen` | If `True`, the model's weights are frozen and no backpropagation is performed. ~~bool~~ | +| `all_layer_outputs` | If `True`, the model returns the outputs of all the layers. Otherwise, only the output of the last layer is returned. This must be set to `True` if any of the pipe's downstream listeners require the outputs of all transformer layers. ~~bool~~ | + +## CuratedTransformer.\_\_call\_\_ {id="call",tag="method"} + +Apply the pipe to one document. The document is modified in place, and returned. +This usually happens under the hood when the `nlp` object is called on a text +and all pipeline components are applied to the `Doc` in order. Both +[`__call__`](/api/curatedtransformer#call) and +[`pipe`](/api/curatedtransformer#pipe) delegate to the +[`predict`](/api/curatedtransformer#predict) and +[`set_annotations`](/api/curatedtransformer#set_annotations) methods. + +> #### Example +> +> ```python +> doc = nlp("This is a sentence.") +> trf = nlp.add_pipe("curated_transformer") +> # This usually happens under the hood +> processed = trf(doc) +> ``` + +| Name | Description | +| ----------- | -------------------------------- | +| `doc` | The document to process. ~~Doc~~ | +| **RETURNS** | The processed document. ~~Doc~~ | + +## CuratedTransformer.pipe {id="pipe",tag="method"} + +Apply the pipe to a stream of documents. This usually happens under the hood +when the `nlp` object is called on a text and all pipeline components are +applied to the `Doc` in order. Both [`__call__`](/api/curatedtransformer#call) +and [`pipe`](/api/curatedtransformer#pipe) delegate to the +[`predict`](/api/curatedtransformer#predict) and +[`set_annotations`](/api/curatedtransformer#set_annotations) methods. + +> #### Example +> +> ```python +> trf = nlp.add_pipe("curated_transformer") +> for doc in trf.pipe(docs, batch_size=50): +> pass +> ``` + +| Name | Description | +| -------------- | ------------------------------------------------------------- | +| `stream` | A stream of documents. ~~Iterable[Doc]~~ | +| _keyword-only_ | | +| `batch_size` | The number of documents to buffer. Defaults to `128`. ~~int~~ | +| **YIELDS** | The processed documents in order. ~~Doc~~ | + +## CuratedTransformer.initialize {id="initialize",tag="method"} + +Initialize the component for training and return an +[`Optimizer`](https://thinc.ai/docs/api-optimizers). `get_examples` should be a +function that returns an iterable of [`Example`](/api/example) objects. **At +least one example should be supplied.** The data examples are used to +**initialize the model** of the component and can either be the full training +data or a representative sample. Initialization includes validating the network, +[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and +setting up the label scheme based on the data. This method is typically called +by [`Language.initialize`](/api/language#initialize). + +> #### Example +> +> ```python +> trf = nlp.add_pipe("curated_transformer") +> trf.initialize(lambda: examples, nlp=nlp) +> ``` + +| Name | Description | +| ---------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ | +| _keyword-only_ | | +| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ | +| `encoder_loader` | Initialization callback for the transformer model. ~~Optional[Callable]~~ | +| `piece_loader` | Initialization callback for the input piece encoder. ~~Optional[Callable]~~ | + +## CuratedTransformer.predict {id="predict",tag="method"} + +Apply the component's model to a batch of [`Doc`](/api/doc) objects without +modifying them. + +> #### Example +> +> ```python +> trf = nlp.add_pipe("curated_transformer") +> scores = trf.predict([doc1, doc2]) +> ``` + +| Name | Description | +| ----------- | ------------------------------------------- | +| `docs` | The documents to predict. ~~Iterable[Doc]~~ | +| **RETURNS** | The model's prediction for each document. | + +## CuratedTransformer.set_annotations {id="set_annotations",tag="method"} + +Assign the extracted features to the `Doc` objects. By default, the +[`DocTransformerOutput`](/api/curatedtransformer#doctransformeroutput) object is +written to the [`Doc._.trf_data`](#assigned-attributes) attribute. Your +`set_extra_annotations` callback is then called, if provided. + +> #### Example +> +> ```python +> trf = nlp.add_pipe("curated_transformer") +> scores = trf.predict(docs) +> trf.set_annotations(docs, scores) +> ``` + +| Name | Description | +| -------- | ------------------------------------------------------------ | +| `docs` | The documents to modify. ~~Iterable[Doc]~~ | +| `scores` | The scores to set, produced by `CuratedTransformer.predict`. | + +## CuratedTransformer.update {id="update",tag="method"} + +Prepare for an update to the transformer. + +Like the [`Tok2Vec`](api/tok2vec) component, the `CuratedTransformer` component +is unusual in that it does not receive "gold standard" annotations to calculate +a weight update. The optimal output of the transformer data is unknown; it's a +hidden layer inside the network that is updated by backpropagating from output +layers. + +The `CuratedTransformer` component therefore does not perform a weight update +during its own `update` method. Instead, it runs its transformer model and +communicates the output and the backpropagation callback to any downstream +components that have been connected to it via the transformer listener sublayer. +If there are multiple listeners, the last layer will actually backprop to the +transformer and call the optimizer, while the others simply increment the +gradients. + +> #### Example +> +> ```python +> trf = nlp.add_pipe("curated_transformer") +> optimizer = nlp.initialize() +> losses = trf.update(examples, sgd=optimizer) +> ``` + +| Name | Description | +| -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `examples` | A batch of [`Example`](/api/example) objects. Only the [`Example.predicted`](/api/example#predicted) `Doc` object is used, the reference `Doc` is ignored. ~~Iterable[Example]~~ | +| _keyword-only_ | | +| `drop` | The dropout rate. ~~float~~ | +| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ | +| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ | +| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ | + +## CuratedTransformer.create_optimizer {id="create_optimizer",tag="method"} + +Create an optimizer for the pipeline component. + +> #### Example +> +> ```python +> trf = nlp.add_pipe("curated_transformer") +> optimizer = trf.create_optimizer() +> ``` + +| Name | Description | +| ----------- | ---------------------------- | +| **RETURNS** | The optimizer. ~~Optimizer~~ | + +## CuratedTransformer.use_params {id="use_params",tag="method, contextmanager"} + +Modify the pipe's model to use the given parameter values. At the end of the +context, the original parameters are restored. + +> #### Example +> +> ```python +> trf = nlp.add_pipe("curated_transformer") +> with trf.use_params(optimizer.averages): +> trf.to_disk("/best_model") +> ``` + +| Name | Description | +| -------- | -------------------------------------------------- | +| `params` | The parameter values to use in the model. ~~dict~~ | + +## CuratedTransformer.to_disk {id="to_disk",tag="method"} + +Serialize the pipe to disk. + +> #### Example +> +> ```python +> trf = nlp.add_pipe("curated_transformer") +> trf.to_disk("/path/to/transformer") +> ``` + +| Name | Description | +| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ | +| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ | +| _keyword-only_ | | +| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ | + +## CuratedTransformer.from_disk {id="from_disk",tag="method"} + +Load the pipe from disk. Modifies the object in place and returns it. + +> #### Example +> +> ```python +> trf = nlp.add_pipe("curated_transformer") +> trf.from_disk("/path/to/transformer") +> ``` + +| Name | Description | +| -------------- | ----------------------------------------------------------------------------------------------- | +| `path` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ | +| _keyword-only_ | | +| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ | +| **RETURNS** | The modified `CuratedTransformer` object. ~~CuratedTransformer~~ | + +## CuratedTransformer.to_bytes {id="to_bytes",tag="method"} + +> #### Example +> +> ```python +> trf = nlp.add_pipe("curated_transformer") +> trf_bytes = trf.to_bytes() +> ``` + +Serialize the pipe to a bytestring. + +| Name | Description | +| -------------- | ------------------------------------------------------------------------------------------- | +| _keyword-only_ | | +| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ | +| **RETURNS** | The serialized form of the `CuratedTransformer` object. ~~bytes~~ | + +## CuratedTransformer.from_bytes {id="from_bytes",tag="method"} + +Load the pipe from a bytestring. Modifies the object in place and returns it. + +> #### Example +> +> ```python +> trf_bytes = trf.to_bytes() +> trf = nlp.add_pipe("curated_transformer") +> trf.from_bytes(trf_bytes) +> ``` + +| Name | Description | +| -------------- | ------------------------------------------------------------------------------------------- | +| `bytes_data` | The data to load from. ~~bytes~~ | +| _keyword-only_ | | +| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ | +| **RETURNS** | The `CuratedTransformer` object. ~~CuratedTransformer~~ | + +## Serialization Fields {id="serialization-fields"} + +During serialization, spaCy will export several data fields used to restore +different aspects of the object. If needed, you can exclude them from +serialization by passing in the string names via the `exclude` argument. + +> #### Example +> +> ```python +> data = trf.to_disk("/path", exclude=["vocab"]) +> ``` + +| Name | Description | +| ------- | -------------------------------------------------------------- | +| `vocab` | The shared [`Vocab`](/api/vocab). | +| `cfg` | The config file. You usually don't want to exclude this. | +| `model` | The binary model data. You usually don't want to exclude this. | + +## DocTransformerOutput {id="doctransformeroutput",tag="dataclass"} + +Curated Transformer outputs for one `Doc` object. Stores the dense +representations generated by the transformer for each piece identifier. Piece +identifiers are grouped by token. Instances of this class are typically assigned +to the [`Doc._.trf_data`](/api/curatedtransformer#assigned-attributes) extension +attribute. + +| Name | Description | +| ----------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `all_outputs` | List of `Ragged` tensors that correspends to outputs of the different transformer layers. Each tensor element corresponds to a piece identifier's representation. ~~List[Ragged]~~ | +| `last_layer_only` | If only the last transformer layer's outputs are preserved. ~~bool~~ | + +### DocTransformerOutput.embedding_layer {id="doctransformeroutput-embeddinglayer",tag="property"} + +Return the output of the transformer's embedding layer or `None` if +`last_layer_only` is `True`. + +| Name | Description | +| ----------- | -------------------------------------------- | +| **RETURNS** | Embedding layer output. ~~Optional[Ragged]~~ | + +### DocTransformerOutput.last_hidden_layer_state {id="doctransformeroutput-lasthiddenlayerstate",tag="property"} + +Return the output of the transformer's last hidden layer. + +| Name | Description | +| ----------- | ------------------------------------ | +| **RETURNS** | Last hidden layer output. ~~Ragged~~ | + +### DocTransformerOutput.all_hidden_layer_states {id="doctransformeroutput-allhiddenlayerstates",tag="property"} + +Return the outputs of all transformer layers (excluding the embedding layer). + +| Name | Description | +| ----------- | -------------------------------------- | +| **RETURNS** | Hidden layer outputs. ~~List[Ragged]~~ | + +### DocTransformerOutput.num_outputs {id="doctransformeroutput-numoutputs",tag="property"} + +Return the number of layer outputs stored in the `DocTransformerOutput` instance +(including the embedding layer). + +| Name | Description | +| ----------- | -------------------------- | +| **RETURNS** | Numbef of outputs. ~~int~~ | + +## Span Getters {id="span_getters",source="github.com/explosion/spacy-transformers/blob/master/spacy_curated_transformers/span_getters.py"} + +Span getters are functions that take a batch of [`Doc`](/api/doc) objects and +return a lists of [`Span`](/api/span) objects for each doc to be processed by +the transformer. This is used to manage long documents by cutting them into +smaller sequences before running the transformer. The spans are allowed to +overlap, and you can also omit sections of the `Doc` if they are not relevant. +Span getters can be referenced in the +`[components.transformer.model.with_spans]` block of the config to customize the +sequences processed by the transformer. + +| Name | Description | +| ----------- | ------------------------------------------------------------- | +| `docs` | A batch of `Doc` objects. ~~Iterable[Doc]~~ | +| **RETURNS** | The spans to process by the transformer. ~~List[List[Span]]~~ | + +### WithStridedSpans.v1 {id="strided_spans",tag="registered function"} + +> #### Example config +> +> ```ini +> [transformer.model.with_spans] +> @architectures = "spacy-curated-transformers.WithStridedSpans.v1" +> stride = 96 +> window = 128 +> ``` + +Create a span getter for strided spans. If you set the `window` and `stride` to +the same value, the spans will cover each token once. Setting `stride` lower +than `window` will allow for an overlap, so that some tokens are counted twice. +This can be desirable, because it allows all tokens to have both a left and +right context. + +| Name | Description | +| -------- | ------------------------ | +| `window` | The window size. ~~int~~ | +| `stride` | The stride size. ~~int~~ | + +## Model Loaders + +[Curated Transformer models](/api/architectures#curated-trf) are constructed +with default hyperparameters and randomized weights when the pipeline is +created. To load the weights of an existing pre-trained model into the pipeline, +one of the following loader callbacks can be used. The pre-trained model must +have the same hyperparameters as the model used by the pipeline. + +### HFTransformerEncoderLoader.v1 {id="hf_trfencoder_loader",tag="registered_function"} + +Construct a callback that initializes a supported transformer model with weights +from a corresponding HuggingFace model. + +| Name | Description | +| ---------- | ------------------------------------------ | +| `name` | Name of the HuggingFace model. ~~str~~ | +| `revision` | Name of the model revision/branch. ~~str~~ | + +### PyTorchCheckpointLoader.v1 {id="pytorch_checkpoint_loader",tag="registered_function"} + +Construct a callback that initializes a supported transformer model with weights +from a PyTorch checkpoint. + +| Name | Description | +| ------ | ---------------------------------------- | +| `path` | Path to the PyTorch checkpoint. ~~Path~~ | + +## Tokenizer Loaders + +[Curated Transformer models](/api/architectures#curated-trf) must be paired with +a matching tokenizer (piece encoder) model in a spaCy pipeline. As with the +transformer models, tokenizers are constructed with an empty vocabulary during +pipeline creation - They need to be initialized with an appropriate loader +before use in training/inference. + +### ByteBPELoader.v1 {id="bytebpe_loader",tag="registered_function"} + +Construct a callback that initializes a Byte-BPE piece encoder model. + +| Name | Description | +| ------------- | ------------------------------------- | +| `vocab_path` | Path to the vocabulary file. ~~Path~~ | +| `merges_path` | Path to the merges file. ~~Path~~ | + +### CharEncoderLoader.v1 {id="charencoder_loader",tag="registered_function"} + +Construct a callback that initializes a character piece encoder model. + +| Name | Description | +| ----------- | --------------------------------------------------------------------------- | +| `path` | Path to the serialized character model. ~~Path~~ | +| `bos_piece` | Piece used as a beginning-of-sentence token. Defaults to `"[BOS]"`. ~~str~~ | +| `eos_piece` | Piece used as a end-of-sentence token. Defaults to `"[EOS]"`. ~~str~~ | +| `unk_piece` | Piece used as a stand-in for unknown tokens. Defaults to `"[UNK]"`. ~~str~~ | +| `normalize` | Unicode normalization form to use. Defaults to `"NFKC"`. ~~str~~ | + +### HFPieceEncoderLoader.v1 {id="hf_pieceencoder_loader",tag="registered_function"} + +Construct a callback that initializes a HuggingFace piece encoder model. Used in +conjunction with the HuggingFace model loader. + +| Name | Description | +| ---------- | ------------------------------------------ | +| `name` | Name of the HuggingFace model. ~~str~~ | +| `revision` | Name of the model revision/branch. ~~str~~ | + +### SentencepieceLoader.v1 {id="sentencepiece_loader",tag="registered_function"} + +Construct a callback that initializes a SentencePiece piece encoder model. + +| Name | Description | +| ------ | ---------------------------------------------------- | +| `path` | Path to the serialized SentencePiece model. ~~Path~~ | + +### WordpieceLoader.v1 {id="wordpiece_loader",tag="registered_function"} + +Construct a callback that initializes a WordPiece piece encoder model. + +| Name | Description | +| ------ | ------------------------------------------------ | +| `path` | Path to the serialized WordPiece model. ~~Path~~ | + +## Callbacks + +### gradual_transformer_unfreezing.v1 {id="gradual_transformer_unfreezing",tag="registered_function"} + +Construct a callback that can be used to gradually unfreeze the weights of one +or more Transformer components during training. This can be used to prevent +catastrophic forgetting during fine-tuning. + +| Name | Description | +| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | +| `target_pipes` | A dictionary whose keys and values correspond to the names of Transformer components and the training step at which they should be unfrozen respectively. ~~Dict[str, int]~~ | diff --git a/website/docs/api/vectors.mdx b/website/docs/api/vectors.mdx index fa4cd0c7a..0e92eb12b 100644 --- a/website/docs/api/vectors.mdx +++ b/website/docs/api/vectors.mdx @@ -297,10 +297,9 @@ The vector size, i.e. `rows * dims`. ## Vectors.is_full {id="is_full",tag="property"} -Whether the vectors table is full and has no slots are available for new keys. -If a table is full, it can be resized using -[`Vectors.resize`](/api/vectors#resize). In `floret` mode, the table is always -full and cannot be resized. +Whether the vectors table is full and no slots are available for new keys. If a +table is full, it can be resized using [`Vectors.resize`](/api/vectors#resize). +In `floret` mode, the table is always full and cannot be resized. > #### Example > @@ -441,7 +440,7 @@ Load state from a binary string. > #### Example > > ```python -> fron spacy.vectors import Vectors +> from spacy.vectors import Vectors > vectors_bytes = vectors.to_bytes() > new_vectors = Vectors(StringStore()) > new_vectors.from_bytes(vectors_bytes) diff --git a/website/docs/usage/embeddings-transformers.mdx b/website/docs/usage/embeddings-transformers.mdx index 5f1e5b817..2bd2856b6 100644 --- a/website/docs/usage/embeddings-transformers.mdx +++ b/website/docs/usage/embeddings-transformers.mdx @@ -632,6 +632,165 @@ def MyCustomVectors( ) ``` +#### Creating a custom vectors implementation {id="custom-vectors",version="3.7"} + +You can specify a custom registered vectors class under `[nlp.vectors]` in order +to use static vectors in formats other than the ones supported by +[`Vectors`](/api/vectors). Extend the abstract [`BaseVectors`](/api/basevectors) +class to implement your custom vectors. + +As an example, the following `BPEmbVectors` class implements support for +[BPEmb subword embeddings](https://bpemb.h-its.org/): + +```python +# requires: pip install bpemb +import warnings +from pathlib import Path +from typing import Callable, Optional, cast + +from bpemb import BPEmb +from thinc.api import Ops, get_current_ops +from thinc.backends import get_array_ops +from thinc.types import Floats2d + +from spacy.strings import StringStore +from spacy.util import registry +from spacy.vectors import BaseVectors +from spacy.vocab import Vocab + + +class BPEmbVectors(BaseVectors): + def __init__( + self, + *, + strings: Optional[StringStore] = None, + lang: Optional[str] = None, + vs: Optional[int] = None, + dim: Optional[int] = None, + cache_dir: Optional[Path] = None, + encode_extra_options: Optional[str] = None, + model_file: Optional[Path] = None, + emb_file: Optional[Path] = None, + ): + kwargs = {} + if lang is not None: + kwargs["lang"] = lang + if vs is not None: + kwargs["vs"] = vs + if dim is not None: + kwargs["dim"] = dim + if cache_dir is not None: + kwargs["cache_dir"] = cache_dir + if encode_extra_options is not None: + kwargs["encode_extra_options"] = encode_extra_options + if model_file is not None: + kwargs["model_file"] = model_file + if emb_file is not None: + kwargs["emb_file"] = emb_file + self.bpemb = BPEmb(**kwargs) + self.strings = strings + self.name = repr(self.bpemb) + self.n_keys = -1 + self.mode = "BPEmb" + self.to_ops(get_current_ops()) + + def __contains__(self, key): + return True + + def is_full(self): + return True + + def add(self, key, *, vector=None, row=None): + warnings.warn( + ( + "Skipping BPEmbVectors.add: the bpemb vector table cannot be " + "modified. Vectors are calculated from bytepieces." + ) + ) + return -1 + + def __getitem__(self, key): + return self.get_batch([key])[0] + + def get_batch(self, keys): + keys = [self.strings.as_string(key) for key in keys] + bp_ids = self.bpemb.encode_ids(keys) + ops = get_array_ops(self.bpemb.emb.vectors) + indices = ops.asarray(ops.xp.hstack(bp_ids), dtype="int32") + lengths = ops.asarray([len(x) for x in bp_ids], dtype="int32") + vecs = ops.reduce_mean(cast(Floats2d, self.bpemb.emb.vectors[indices]), lengths) + return vecs + + @property + def shape(self): + return self.bpemb.vectors.shape + + def __len__(self): + return self.shape[0] + + @property + def vectors_length(self): + return self.shape[1] + + @property + def size(self): + return self.bpemb.vectors.size + + def to_ops(self, ops: Ops): + self.bpemb.emb.vectors = ops.asarray(self.bpemb.emb.vectors) + + +@registry.vectors("BPEmbVectors.v1") +def create_bpemb_vectors( + lang: Optional[str] = "multi", + vs: Optional[int] = None, + dim: Optional[int] = None, + cache_dir: Optional[Path] = None, + encode_extra_options: Optional[str] = None, + model_file: Optional[Path] = None, + emb_file: Optional[Path] = None, +) -> Callable[[Vocab], BPEmbVectors]: + def bpemb_vectors_factory(vocab: Vocab) -> BPEmbVectors: + return BPEmbVectors( + strings=vocab.strings, + lang=lang, + vs=vs, + dim=dim, + cache_dir=cache_dir, + encode_extra_options=encode_extra_options, + model_file=model_file, + emb_file=emb_file, + ) + + return bpemb_vectors_factory +``` + + + +Note that the serialization methods are not implemented, so the embeddings are +loaded from your local cache or downloaded by `BPEmb` each time the pipeline is +loaded. + + + +To use this in your pipeline, specify this registered function under +`[nlp.vectors]` in your config: + +```ini +[nlp.vectors] +@vectors = "BPEmbVectors.v1" +lang = "en" +``` + +Or specify it when creating a blank pipeline: + +```python +nlp = spacy.blank("en", config={"nlp.vectors": {"@vectors": "BPEmbVectors.v1", "lang": "en"}}) +``` + +Remember to include this code with `--code` when using +[`spacy train`](/api/cli#train) and [`spacy package`](/api/cli#package). + ## Pretraining {id="pretraining"} The [`spacy pretrain`](/api/cli#pretrain) command lets you initialize your diff --git a/website/docs/usage/index.mdx b/website/docs/usage/index.mdx index 414968d42..c50e9db6c 100644 --- a/website/docs/usage/index.mdx +++ b/website/docs/usage/index.mdx @@ -20,7 +20,7 @@ menu: ## Installation instructions {id="installation"} -spaCy is compatible with **64-bit CPython 3.6+** and runs on **Unix/Linux**, +spaCy is compatible with **64-bit CPython 3.7+** and runs on **Unix/Linux**, **macOS/OS X** and **Windows**. The latest spaCy releases are available over [pip](https://pypi.python.org/pypi/spacy) and [conda](https://anaconda.org/conda-forge/spacy). diff --git a/website/docs/usage/projects.mdx b/website/docs/usage/projects.mdx index f3cca8013..b089a7ab5 100644 --- a/website/docs/usage/projects.mdx +++ b/website/docs/usage/projects.mdx @@ -656,9 +656,9 @@ locally. You can list one or more remotes in the `remotes` section of your [`project.yml`](#project-yml) by mapping a string name to the URL of the storage. Under the hood, spaCy uses -[`Pathy`](https://github.com/justindujardin/pathy) to communicate with the -remote storages, so you can use any protocol that `Pathy` supports, including -[S3](https://aws.amazon.com/s3/), +[`cloudpathlib`](https://cloudpathlib.drivendata.org) to communicate with the +remote storages, so you can use any protocol that `cloudpathlib` supports, +including [S3](https://aws.amazon.com/s3/), [Google Cloud Storage](https://cloud.google.com/storage), and the local filesystem, although you may need to install extra dependencies to use certain protocols. diff --git a/website/docs/usage/rule-based-matching.mdx b/website/docs/usage/rule-based-matching.mdx index 4f54415cb..d01107ea2 100644 --- a/website/docs/usage/rule-based-matching.mdx +++ b/website/docs/usage/rule-based-matching.mdx @@ -850,14 +850,14 @@ negative pattern. To keep it simple, we'll either add or subtract `0.1` points this way, the score will also reflect combinations of emoji, even positive _and_ negative ones. -With a library like [Emojipedia](https://github.com/bcongdon/python-emojipedia), -we can also retrieve a short description for each emoji – for example, 😍's -official title is "Smiling Face With Heart-Eyes". Assigning it to a +With a library like [emoji](https://github.com/carpedm20/emoji), we can also +retrieve a short description for each emoji – for example, 😍's official title +is "Smiling Face With Heart-Eyes". Assigning it to a [custom attribute](/usage/processing-pipelines#custom-components-attributes) on the emoji span will make it available as `span._.emoji_desc`. ```python -from emojipedia import Emojipedia # Installation: pip install emojipedia +import emoji # Installation: pip install emoji from spacy.tokens import Span # Get the global Span object Span.set_extension("emoji_desc", default=None) # Register the custom attribute @@ -869,9 +869,9 @@ def label_sentiment(matcher, doc, i, matches): elif doc.vocab.strings[match_id] == "SAD": doc.sentiment -= 0.1 # Subtract 0.1 for negative sentiment span = doc[start:end] - emoji = Emojipedia.search(span[0].text) # Get data for emoji - span._.emoji_desc = emoji.title # Assign emoji description - + # Verify if it is an emoji and set the extension attribute correctly. + if emoji.is_emoji(span[0].text): + span._.emoji_desc = emoji.demojize(span[0].text, delimiters=("", ""), language=doc.lang_).replace("_", " ") ``` To label the hashtags, we can use a @@ -1096,28 +1096,28 @@ The following operators are supported by the `DependencyMatcher`, most of which come directly from [Semgrex](https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/semgraph/semgrex/SemgrexPattern.html): -| Symbol | Description | -| --------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------- | -| `A < B` | `A` is the immediate dependent of `B`. | -| `A > B` | `A` is the immediate head of `B`. | -| `A << B` | `A` is the dependent in a chain to `B` following dep → head paths. | -| `A >> B` | `A` is the head in a chain to `B` following head → dep paths. | -| `A . B` | `A` immediately precedes `B`, i.e. `A.i == B.i - 1`, and both are within the same dependency tree. | -| `A .* B` | `A` precedes `B`, i.e. `A.i < B.i`, and both are within the same dependency tree _(Semgrex counterpart: `..`)_. | -| `A ; B` | `A` immediately follows `B`, i.e. `A.i == B.i + 1`, and both are within the same dependency tree _(Semgrex counterpart: `-`)_. | -| `A ;* B` | `A` follows `B`, i.e. `A.i > B.i`, and both are within the same dependency tree _(Semgrex counterpart: `--`)_. | -| `A $+ B` | `B` is a right immediate sibling of `A`, i.e. `A` and `B` have the same parent and `A.i == B.i - 1`. | -| `A $- B` | `B` is a left immediate sibling of `A`, i.e. `A` and `B` have the same parent and `A.i == B.i + 1`. | -| `A $++ B` | `B` is a right sibling of `A`, i.e. `A` and `B` have the same parent and `A.i < B.i`. | -| `A $-- B` | `B` is a left sibling of `A`, i.e. `A` and `B` have the same parent and `A.i > B.i`. | -| `A >+ B` 3.5.1 | `B` is a right immediate child of `A`, i.e. `A` is a parent of `B` and `A.i == B.i - 1` _(not in Semgrex)_. | -| `A >- B` 3.5.1 | `B` is a left immediate child of `A`, i.e. `A` is a parent of `B` and `A.i == B.i + 1` _(not in Semgrex)_. | -| `A >++ B` | `B` is a right child of `A`, i.e. `A` is a parent of `B` and `A.i < B.i`. | -| `A >-- B` | `B` is a left child of `A`, i.e. `A` is a parent of `B` and `A.i > B.i`. | -| `A <+ B` 3.5.1 | `B` is a right immediate parent of `A`, i.e. `A` is a child of `B` and `A.i == B.i - 1` _(not in Semgrex)_. | -| `A <- B` 3.5.1 | `B` is a left immediate parent of `A`, i.e. `A` is a child of `B` and `A.i == B.i + 1` _(not in Semgrex)_. | -| `A <++ B` | `B` is a right parent of `A`, i.e. `A` is a child of `B` and `A.i < B.i`. | -| `A <-- B` | `B` is a left parent of `A`, i.e. `A` is a child of `B` and `A.i > B.i`. | +| Symbol | Description | +| --------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------ | +| `A < B` | `A` is the immediate dependent of `B`. | +| `A > B` | `A` is the immediate head of `B`. | +| `A << B` | `A` is the dependent in a chain to `B` following dep → head paths. | +| `A >> B` | `A` is the head in a chain to `B` following head → dep paths. | +| `A . B` | `A` immediately precedes `B`, i.e. `A.i == B.i - 1`, and both are within the same dependency tree. | +| `A .* B` | `A` precedes `B`, i.e. `A.i < B.i`, and both are within the same dependency tree _(Semgrex counterpart: `..`)_. | +| `A ; B` | `A` immediately follows `B`, i.e. `A.i == B.i + 1`, and both are within the same dependency tree _(Semgrex counterpart: `-`)_. | +| `A ;* B` | `A` follows `B`, i.e. `A.i > B.i`, and both are within the same dependency tree _(Semgrex counterpart: `--`)_. | +| `A $+ B` | `B` is a right immediate sibling of `A`, i.e. `A` and `B` have the same parent and `A.i == B.i - 1`. | +| `A $- B` | `B` is a left immediate sibling of `A`, i.e. `A` and `B` have the same parent and `A.i == B.i + 1`. | +| `A $++ B` | `B` is a right sibling of `A`, i.e. `A` and `B` have the same parent and `A.i < B.i`. | +| `A $-- B` | `B` is a left sibling of `A`, i.e. `A` and `B` have the same parent and `A.i > B.i`. | +| `A >+ B` 3.5.1 | `B` is a right immediate child of `A`, i.e. `A` is a parent of `B` and `A.i == B.i - 1` _(not in Semgrex)_. | +| `A >- B` 3.5.1 | `B` is a left immediate child of `A`, i.e. `A` is a parent of `B` and `A.i == B.i + 1` _(not in Semgrex)_. | +| `A >++ B` | `B` is a right child of `A`, i.e. `A` is a parent of `B` and `A.i < B.i`. | +| `A >-- B` | `B` is a left child of `A`, i.e. `A` is a parent of `B` and `A.i > B.i`. | +| `A <+ B` 3.5.1 | `B` is a right immediate parent of `A`, i.e. `A` is a child of `B` and `A.i == B.i - 1` _(not in Semgrex)_. | +| `A <- B` 3.5.1 | `B` is a left immediate parent of `A`, i.e. `A` is a child of `B` and `A.i == B.i + 1` _(not in Semgrex)_. | +| `A <++ B` | `B` is a right parent of `A`, i.e. `A` is a child of `B` and `A.i < B.i`. | +| `A <-- B` | `B` is a left parent of `A`, i.e. `A` is a child of `B` and `A.i > B.i`. | ### Designing dependency matcher patterns {id="dependencymatcher-patterns"} diff --git a/website/docs/usage/v3-7.mdx b/website/docs/usage/v3-7.mdx new file mode 100644 index 000000000..76fc9530f --- /dev/null +++ b/website/docs/usage/v3-7.mdx @@ -0,0 +1,140 @@ +--- +title: What's New in v3.7 +teaser: New features and how to upgrade +menu: + - ['New Features', 'features'] + - ['Upgrading Notes', 'upgrading'] +--- + +## New features {id="features",hidden="true"} + +spaCy v3.7 adds support for Python 3.12, introduces the new standalone library +[Weasel](https://github.com/explosion/weasel) for project workflows, and updates +the transformer-based trained pipelines to use our new +[Curated Transformers](https://github.com/explosion/curated-transformers) +library. + +This release drops support for Python 3.6. + +### Weasel {id="weasel"} + +The [spaCy projects](/usage/projects) functionality has been moved into a new +standalone library [Weasel](https://github.com/explosion/weasel). This brings +minor changes to spaCy-specific settings in spaCy projects (see +[upgrading](#upgrading) below), but also makes it possible to use the same +workflow functionality outside of spaCy. + +All `spacy project` commands should run as before, just now they're using Weasel +under the hood. + + + +Remote storage for spaCy projects is not yet supported for Python 3.12. Use +Python 3.11 or earlier for remote storage. + + + +### Registered vectors {id="custom-vectors"} + +You can specify a custom registered vectors class under `[nlp.vectors]` in order +to use static vectors in formats other than the ones supported by +[`Vectors`](/api/vectors). To implement your custom vectors, extend the abstract +class [`BaseVectors`](/api/basevectors). See an example using +[BPEmb subword embeddings](/usage/embeddings-transformers#custom-vectors). + +### Additional features and improvements {id="additional-features-and-improvements"} + +- Add support for Python 3.12. +- Extend to Thinc v8.2. +- Extend `transformers` extra to `spacy-transformers` v1.3. +- Add `--spans-key` option for CLI evaluation with `spacy benchmark accuracy`. +- Load the CLI module lazily for `spacy.info`. +- Add type stubs for for `spacy.training.example`. +- Warn for unsupported pattern keys in dependency matcher. +- `Language.replace_listeners`: Pass the replaced listener and the `tok2vec` + pipe to the callback in order to support `spacy-curated-transformers`. +- Always use `tqdm` with `disable=None` in order to disable output in + non-interactive environments. +- Language updates: + - Add left and right pointing angle brackets as punctuation to ancient Greek. + - Update example sentences for Turkish. +- Package setup updates: + - Update NumPy build constraints for NumPy 1.25+. For Python 3.9+, it is no + longer necessary to set build constraints while building binary wheels. + - Refactor Cython profiling in order to disable profiling for Python 3.12 in + the package setup, since Cython does not currently support profiling for + Python 3.12. + +## Trained pipelines {id="pipelines"} + +### Pipeline updates {id="pipeline-updates"} + +The transformer-based `trf` pipelines have been updated to use our new +[Curated Transformers](https://github.com/explosion/curated-transformers) +library using the Thinc model wrappers and pipeline component from +[spaCy Curated Transformers](https://github.com/explosion/spacy-curated-transformers). + +## Notes about upgrading from v3.6 {id="upgrading"} + +This release drops support for Python 3.6, drops mypy checks for Python 3.7 and +removes the `ray` extra. In addition there are several minor changes for spaCy +projects described in the following section. + +### Backwards incompatibilities for spaCy Projects {id="upgrading-projects"} + +`spacy project` has a few backwards incompatibilities due to the transition to +the standalone library [Weasel](https://github.com/explosion/weasel), which is +not as tightly coupled to spaCy. Weasel produces warnings when it detects older +spaCy-specific settings in your environment or project config. + +- Support for the `spacy_version` configuration key has been dropped. +- Support for the `check_requirements` configuration key has been dropped due to + the deprecation of `pkg_resources`. +- The `SPACY_CONFIG_OVERRIDES` environment variable is no longer checked. You + can set configuration overrides using `WEASEL_CONFIG_OVERRIDES`. +- Support for `SPACY_PROJECT_USE_GIT_VERSION` environment variable has been + dropped. +- Error codes are now Weasel-specific and do not follow spaCy error codes. + +### Pipeline package version compatibility {id="version-compat"} + +> #### Using legacy implementations +> +> In spaCy v3, you'll still be able to load and reference legacy implementations +> via [`spacy-legacy`](https://github.com/explosion/spacy-legacy), even if the +> components or architectures change and newer versions are available in the +> core library. + +When you're loading a pipeline package trained with an earlier version of spaCy +v3, you will see a warning telling you that the pipeline may be incompatible. +This doesn't necessarily have to be true, but we recommend running your +pipelines against your test suite or evaluation data to make sure there are no +unexpected results. + +If you're using one of the [trained pipelines](/models) we provide, you should +run [`spacy download`](/api/cli#download) to update to the latest version. To +see an overview of all installed packages and their compatibility, you can run +[`spacy validate`](/api/cli#validate). + +If you've trained your own custom pipeline and you've confirmed that it's still +working as expected, you can update the spaCy version requirements in the +[`meta.json`](/api/data-formats#meta): + +```diff +- "spacy_version": ">=3.6.0,<3.7.0", ++ "spacy_version": ">=3.6.0,<3.8.0", +``` + +### Updating v3.6 configs + +To update a config from spaCy v3.6 with the new v3.7 settings, run +[`init fill-config`](/api/cli#init-fill-config): + +```cli +$ python -m spacy init fill-config config-v3.6.cfg config-v3.7.cfg +``` + +In many cases ([`spacy train`](/api/cli#train), +[`spacy.load`](/api/top-level#spacy.load)), the new defaults will be filled in +automatically, but you'll need to fill in the new settings to run +[`debug config`](/api/cli#debug) and [`debug data`](/api/cli#debug-data). diff --git a/website/meta/sidebars.json b/website/meta/sidebars.json index 033f71b12..24213ed12 100644 --- a/website/meta/sidebars.json +++ b/website/meta/sidebars.json @@ -15,7 +15,8 @@ { "text": "New in v3.3", "url": "/usage/v3-3" }, { "text": "New in v3.4", "url": "/usage/v3-4" }, { "text": "New in v3.5", "url": "/usage/v3-5" }, - { "text": "New in v3.6", "url": "/usage/v3-6" } + { "text": "New in v3.6", "url": "/usage/v3-6" }, + { "text": "New in v3.7", "url": "/usage/v3-7" } ] }, { @@ -100,6 +101,7 @@ "items": [ { "text": "AttributeRuler", "url": "/api/attributeruler" }, { "text": "CoreferenceResolver", "url": "/api/coref" }, + { "text": "CuratedTransformer", "url": "/api/curatedtransformer" }, { "text": "DependencyParser", "url": "/api/dependencyparser" }, { "text": "EditTreeLemmatizer", "url": "/api/edittreelemmatizer" }, { "text": "EntityLinker", "url": "/api/entitylinker" }, @@ -135,6 +137,7 @@ "label": "Other", "items": [ { "text": "Attributes", "url": "/api/attributes" }, + { "text": "BaseVectors", "url": "/api/basevectors" }, { "text": "Corpus", "url": "/api/corpus" }, { "text": "InMemoryLookupKB", "url": "/api/inmemorylookupkb" }, { "text": "KnowledgeBase", "url": "/api/kb" }, diff --git a/website/meta/site.json b/website/meta/site.json index 08fcde62e..a07d131d3 100644 --- a/website/meta/site.json +++ b/website/meta/site.json @@ -27,7 +27,7 @@ "indexName": "spacy" }, "binderUrl": "explosion/spacy-io-binder", - "binderVersion": "3.6", + "binderVersion": "3.7", "sections": [ { "id": "usage", "title": "Usage Documentation", "theme": "blue" }, { "id": "models", "title": "Models Documentation", "theme": "blue" }, diff --git a/website/meta/universe.json b/website/meta/universe.json index 46de8121c..b2868c084 100644 --- a/website/meta/universe.json +++ b/website/meta/universe.json @@ -4469,6 +4469,37 @@ }, "category": ["pipeline", "standalone"], "tags": ["spans", "rules", "ner"] + }, + { + "id": "rolegal", + "title": "A spaCy Package for Romanian Legal Document Processing", + "thumb": "https://raw.githubusercontent.com/senisioi/rolegal/main/img/paper200x200.jpeg", + "slogan": "rolegal: a spaCy Package for Noisy Romanian Legal Document Processing", + "description": "This is a spaCy language model for Romanian legal domain trained with floret 4-gram to 5-gram embeddings and `LEGAL` entity recognition. Useful for processing OCR-resulted noisy legal documents.", + "github": "senisioi/rolegal", + "pip": "ro-legal-fl", + "tags": ["legal", "floret", "ner", "romanian"], + "code_example": [ + "import spacy", + "nlp = spacy.load(\"ro_legal_fl\")", + "", + "doc = nlp(\"Titlul III din LEGEA nr. 255 din 19 iulie 2013, publicată în MONITORUL OFICIAL\")", + "# legal entity identification", + "for entity in doc.ents:", + " print('entity: ', entity, '; entity type: ', entity.label_)", + "", + "# floret n-gram embeddings robust to typos", + "print(nlp('achizit1e public@').similarity(nlp('achiziții publice')))", + "# 0.7393895566928835", + "print(nlp('achizitii publice').similarity(nlp('achiziții publice')))", + "# 0.8996480808279399" + ], + "author": "Sergiu Nisioi", + "author_links": { + "github": "senisioi", + "website": "https://nlp.unibuc.ro/people/snisioi.html" + }, + "category": ["pipeline", "training", "models"] } ], diff --git a/website/src/templates/index.js b/website/src/templates/index.js index c8295593c..1c969bd39 100644 --- a/website/src/templates/index.js +++ b/website/src/templates/index.js @@ -58,8 +58,8 @@ const AlertSpace = ({ nightly, legacy }) => { } const navAlert = ( - - 💥 Out now: spaCy v3.6 + + 💥 Out now: spaCy v3.7 )