mirror of https://github.com/explosion/spaCy.git
Fix v3 overview [ci skip]
This commit is contained in:
parent
1c4df8fd09
commit
019a1dd5e8
|
@ -433,14 +433,14 @@ The following methods, attributes and commands are new in spaCy v3.0.
|
|||
| Name | Description |
|
||||
| ------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| [`Token.lex`](/api/token#attributes) | Access a token's [`Lexeme`](/api/lexeme). |
|
||||
| [`Token.morph`](/api/token#attributes), [`Token.morph_`](/api/token#attributes) | Access a token's morphological analysis. |
|
||||
| [`Token.morph`](/api/token#attributes) | Access a token's morphological analysis. |
|
||||
| [`Doc.has_annotation`](/api/doc#has_annotation) | Check whether a doc has annotation on a token attribute. |
|
||||
| [`Language.select_pipes`](/api/language#select_pipes) | Context manager for enabling or disabling specific pipeline components for a block. |
|
||||
| [`Language.disable_pipe`](/api/language#disable_pipe), [`Language.enable_pipe`](/api/language#enable_pipe) | Disable or enable a loaded pipeline component (but don't remove it). |
|
||||
| [`Language.analyze_pipes`](/api/language#analyze_pipes) | [Analyze](/usage/processing-pipelines#analysis) components and their interdependencies. |
|
||||
| [`Language.resume_training`](/api/language#resume_training) | Experimental: continue training a trained pipeline and initialize "rehearsal" for components that implement a `rehearse` method to prevent catastrophic forgetting. |
|
||||
| [`@Language.factory`](/api/language#factory), [`@Language.component`](/api/language#component) | Decorators for [registering](/usage/processing-pipelines#custom-components) pipeline component factories and simple stateless component functions. |
|
||||
| [`Language.has_factory`](/api/language#has_factory) | Check whether a component factory is registered on a language class. |
|
||||
| [`Language.has_factory`](/api/language#has_factory) | Check whether a component factory is registered on a language class. |
|
||||
| [`Language.get_factory_meta`](/api/language#get_factory_meta), [`Language.get_pipe_meta`](/api/language#get_factory_meta) | Get the [`FactoryMeta`](/api/language#factorymeta) with component metadata for a factory or instance name. |
|
||||
| [`Language.config`](/api/language#config) | The [config](/usage/training#config) used to create the current `nlp` object. An instance of [`Config`](https://thinc.ai/docs/api-config#config) and can be saved to disk and used for training. |
|
||||
| [`Language.components`](/api/language#attributes), [`Language.component_names`](/api/language#attributes) | All available components and component names, including disabled components that are not run as part of the pipeline. |
|
||||
|
@ -1032,9 +1032,9 @@ change your names and imports:
|
|||
Thanks to everyone who's been contributing to the spaCy ecosystem by developing
|
||||
and maintaining one of the many awesome [plugins and extensions](/universe).
|
||||
We've tried to make it as easy as possible for you to upgrade your packages for
|
||||
spaCy v3.0. The most common use case for plugins is providing pipeline components
|
||||
and extension attributes. When migrating your plugin, double-check the
|
||||
following:
|
||||
spaCy v3.0. The most common use case for plugins is providing pipeline
|
||||
components and extension attributes. When migrating your plugin, double-check
|
||||
the following:
|
||||
|
||||
- Use the [`@Language.factory`](/api/language#factory) decorator to register
|
||||
your component and assign it a name. This allows users to refer to your
|
||||
|
|
Loading…
Reference in New Issue