Refactor CoNLL training script

This commit is contained in:
Matthew Honnibal 2018-02-22 16:00:34 +01:00
parent 6a27a4f77c
commit 001e2ec6d6
1 changed files with 114 additions and 61 deletions

View File

@ -5,8 +5,10 @@ from __future__ import unicode_literals
import plac
import tqdm
import re
import sys
import spacy
import spacy.util
from spacy.tokens import Doc
from spacy.gold import GoldParse, minibatch
from spacy.syntax.nonproj import projectivize
from collections import Counter
@ -78,16 +80,81 @@ def golds_to_gold_tuples(docs, golds):
tuples.append((text, sents))
return tuples
def split_text(text):
paragraphs = text.split('\n\n')
paragraphs = [par.strip().replace('\n', ' ') for par in paragraphs]
return paragraphs
return [par.strip().replace('\n', ' ')
for par in text.split('\n\n')]
def read_data(nlp, conllu_file, text_file, raw_text=True, oracle_segments=False,
limit=None):
'''Read the CONLLU format into (Doc, GoldParse) tuples. If raw_text=True,
include Doc objects created using nlp.make_doc and then aligned against
the gold-standard sequences. If oracle_segments=True, include Doc objects
created from the gold-standard segments. At least one must be True.'''
if not raw_text and not oracle_segments:
raise ValueError("At least one of raw_text or oracle_segments must be True")
paragraphs = split_text(text_file.read())
conllu = read_conllu(conllu_file)
# sd is spacy doc; cd is conllu doc
# cs is conllu sent, ct is conllu token
docs = []
golds = []
for text, cd in zip(paragraphs, conllu):
doc_words = []
doc_tags = []
doc_heads = []
doc_deps = []
doc_ents = []
for cs in cd:
sent_words = []
sent_tags = []
sent_heads = []
sent_deps = []
for id_, word, lemma, pos, tag, morph, head, dep, _1, _2 in cs:
if '.' in id_:
continue
if '-' in id_:
continue
id_ = int(id_)-1
head = int(head)-1 if head != '0' else id_
sent_words.append(word)
sent_tags.append(tag)
sent_heads.append(head)
sent_deps.append('ROOT' if dep == 'root' else dep)
if oracle_segments:
sent_heads, sent_deps = projectivize(sent_heads, sent_deps)
docs.append(Doc(nlp.vocab, words=sent_words))
golds.append(GoldParse(docs[-1], words=sent_words, heads=sent_heads,
tags=sent_tags, deps=sent_deps,
entities=['-']*len(sent_words)))
for head in sent_heads:
doc_heads.append(len(doc_words)+head)
doc_words.extend(sent_words)
doc_tags.extend(sent_tags)
doc_deps.extend(sent_deps)
doc_ents.extend(['-']*len(sent_words))
# Create a GoldParse object for the sentence
doc_heads, doc_deps = projectivize(doc_heads, doc_deps)
if raw_text:
docs.append(nlp.make_doc(text))
golds.append(GoldParse(docs[-1], words=doc_words, tags=doc_tags,
heads=doc_heads, deps=doc_deps,
entities=doc_ents))
if limit and len(docs) >= limit:
break
return docs, golds
def refresh_docs(docs):
vocab = docs[0].vocab
return [Doc(vocab, words=[t.text for t in doc],
spaces=[t.whitespace_ for t in doc])
for doc in docs]
def read_conllu(file_):
docs = []
doc = []
doc = None
sent = []
for line in file_:
if line.startswith('# newdoc'):
@ -98,57 +165,37 @@ def read_conllu(file_):
continue
elif not line.strip():
if sent:
doc.append(sent)
if doc is None:
docs.append([sent])
else:
doc.append(sent)
sent = []
else:
sent.append(line.strip().split())
if sent:
doc.append(sent)
if doc is None:
docs.append([sent])
else:
doc.append(sent)
if doc:
docs.append(doc)
return docs
def get_docs(nlp, text):
paragraphs = split_text(text)
docs = [nlp.make_doc(par) for par in paragraphs]
return docs
def get_golds(docs, conllu):
# sd is spacy doc; cd is conllu doc
# cs is conllu sent, ct is conllu token
golds = []
for sd, cd in zip(docs, conllu):
words = []
tags = []
heads = []
deps = []
for cs in cd:
for id_, word, lemma, pos, tag, morph, head, dep, _1, _2 in cs:
if '.' in id_:
continue
i = len(words)
id_ = int(id_)-1
head = int(head)-1 if head != '0' else id_
head_dist = head - id_
words.append(word)
tags.append(tag)
heads.append(i+head_dist)
deps.append('ROOT' if dep == 'root' else dep)
heads, deps = projectivize(heads, deps)
entities = ['-'] * len(words)
gold = GoldParse(sd, words=words, tags=tags, heads=heads, deps=deps,
entities=entities)
golds.append(gold)
return golds
def parse_dev_data(nlp, text_loc, conllu_loc):
with open(text_loc) as file_:
docs = get_docs(nlp, file_.read())
with open(conllu_loc) as file_:
conllu_dev = read_conllu(file_)
golds = list(get_golds(docs, conllu_dev))
def parse_dev_data(nlp, text_loc, conllu_loc, oracle_segments=False,
joint_sbd=True):
with open(text_loc) as text_file:
with open(conllu_loc) as conllu_file:
docs, golds = read_data(nlp, conllu_file, text_file,
oracle_segments=oracle_segments)
if not joint_sbd:
sbd = nlp.create_pipe('sentencizer')
for doc in docs:
doc = sbd(doc)
for sent in doc.sents:
sent[0].is_sent_start = True
for word in sent[1:]:
word.is_sent_start = False
scorer = nlp.evaluate(zip(docs, golds))
return docs, scorer
@ -186,20 +233,19 @@ def print_conllu(docs, file_):
head = 0
else:
head = k + (t.head.i - t.i) + 1
fields = [str(k+1), t.text, t.lemma_, t.pos_, t.tag_, '_', str(head), t.dep_, '_', '_']
fields = [str(k+1), t.text, t.lemma_, t.pos_, t.tag_, '_',
str(head), t.dep_.lower(), '_', '_']
file_.write('\t'.join(fields) + '\n')
file_.write('\n')
def main(spacy_model, conllu_train_loc, text_train_loc, conllu_dev_loc, text_dev_loc,
output_loc):
with open(conllu_train_loc) as file_:
conllu_train = read_conllu(file_)
nlp = load_model(spacy_model)
print("Get docs")
with open(text_train_loc) as file_:
docs = get_docs(nlp, file_.read())
golds = list(get_golds(docs, conllu_train))
with open(conllu_train_loc) as conllu_file:
with open(text_train_loc) as text_file:
docs, golds = read_data(nlp, conllu_file, text_file,
oracle_segments=False, raw_text=True)
print("Create parser")
nlp.add_pipe(nlp.create_pipe('parser'))
nlp.add_pipe(nlp.create_pipe('tagger'))
@ -221,15 +267,14 @@ def main(spacy_model, conllu_train_loc, text_train_loc, conllu_dev_loc, text_dev
# Batch size starts at 1 and grows, so that we make updates quickly
# at the beginning of training.
batch_sizes = spacy.util.compounding(spacy.util.env_opt('batch_from', 1),
spacy.util.env_opt('batch_to', 8),
spacy.util.env_opt('batch_to', 2),
spacy.util.env_opt('batch_compound', 1.001))
for i in range(10):
with open(text_train_loc) as file_:
docs = get_docs(nlp, file_.read())
docs = docs[:len(golds)]
for i in range(30):
docs = refresh_docs(docs)
batches = minibatch(list(zip(docs, golds)), size=batch_sizes)
with tqdm.tqdm(total=n_train_words, leave=False) as pbar:
losses = {}
for batch in minibatch(list(zip(docs, golds)), size=batch_sizes):
for batch in batches:
if not batch:
continue
batch_docs, batch_gold = zip(*batch)
@ -239,10 +284,18 @@ def main(spacy_model, conllu_train_loc, text_train_loc, conllu_dev_loc, text_dev
pbar.update(sum(len(doc) for doc in batch_docs))
with nlp.use_params(optimizer.averages):
dev_docs, scorer = parse_dev_data(nlp, text_dev_loc, conllu_dev_loc)
dev_docs, scorer = parse_dev_data(nlp, text_dev_loc, conllu_dev_loc,
oracle_segments=False, joint_sbd=True)
print_progress(i, losses, scorer)
with open(output_loc, 'w') as file_:
print_conllu(dev_docs, file_)
dev_docs, scorer = parse_dev_data(nlp, text_dev_loc, conllu_dev_loc,
oracle_segments=False, joint_sbd=False)
print_progress(i, losses, scorer)
with open(output_loc, 'w') as file_:
print_conllu(dev_docs, file_)
if __name__ == '__main__':
plac.call(main)