2015-07-17 19:21:10 +00:00
|
|
|
from __future__ import unicode_literals
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
import numpy
|
|
|
|
|
|
|
|
from spacy.vocab import Vocab
|
|
|
|
from spacy.tokens.doc import Doc
|
2015-07-18 20:46:40 +00:00
|
|
|
from spacy.attrs import ORTH, SPACY, TAG, DEP, HEAD
|
2015-07-17 19:21:10 +00:00
|
|
|
from spacy.serialize.packer import Packer
|
|
|
|
|
|
|
|
from spacy.serialize.bits import BitArray
|
|
|
|
|
|
|
|
|
|
|
|
def get_lex_props(string, prob=-22):
|
|
|
|
return {
|
|
|
|
'flags': 0,
|
|
|
|
'length': len(string),
|
|
|
|
'orth': string,
|
|
|
|
'lower': string,
|
|
|
|
'norm': string,
|
|
|
|
'shape': string,
|
|
|
|
'prefix': string[0],
|
|
|
|
'suffix': string[-3:],
|
|
|
|
'cluster': 0,
|
|
|
|
'prob': prob,
|
|
|
|
'sentiment': 0
|
|
|
|
}
|
|
|
|
|
|
|
|
@pytest.fixture
|
|
|
|
def vocab():
|
|
|
|
vocab = Vocab(get_lex_props=get_lex_props)
|
|
|
|
vocab['dog'] = get_lex_props('dog', 0.001)
|
2015-07-18 20:46:40 +00:00
|
|
|
assert vocab[vocab.strings['dog']].orth_ == 'dog'
|
2015-07-17 19:21:10 +00:00
|
|
|
vocab['the'] = get_lex_props('the', 0.01)
|
|
|
|
vocab['quick'] = get_lex_props('quick', 0.005)
|
|
|
|
vocab['jumped'] = get_lex_props('jumped', 0.007)
|
|
|
|
return vocab
|
|
|
|
|
|
|
|
|
|
|
|
def test_packer_unannotated(vocab):
|
2015-07-18 20:46:40 +00:00
|
|
|
packer = Packer(vocab, [(ORTH, [(lex.orth, lex.prob) for lex in vocab]),
|
|
|
|
(SPACY, [])])
|
2015-07-17 19:21:10 +00:00
|
|
|
|
2015-07-18 20:46:40 +00:00
|
|
|
ids = [vocab[w].orth for w in 'the dog jumped'.split()]
|
2015-07-17 19:21:10 +00:00
|
|
|
msg = Doc.from_ids(vocab, ids, [1, 1, 0])
|
|
|
|
|
|
|
|
assert msg.string == 'the dog jumped'
|
|
|
|
|
|
|
|
bits = packer.pack(msg)
|
|
|
|
|
|
|
|
result = packer.unpack(bits)
|
|
|
|
|
|
|
|
assert result.string == 'the dog jumped'
|
|
|
|
|
|
|
|
|
|
|
|
def test_packer_annotated(vocab):
|
|
|
|
nn = vocab.strings['NN']
|
|
|
|
dt = vocab.strings['DT']
|
|
|
|
vbd = vocab.strings['VBD']
|
|
|
|
jj = vocab.strings['JJ']
|
|
|
|
det = vocab.strings['det']
|
|
|
|
nsubj = vocab.strings['nsubj']
|
|
|
|
adj = vocab.strings['adj']
|
|
|
|
root = vocab.strings['ROOT']
|
|
|
|
|
|
|
|
attr_freqs = [
|
2015-07-18 20:46:40 +00:00
|
|
|
(ORTH, [(lex.orth, lex.prob) for lex in vocab]),
|
2015-07-17 19:21:10 +00:00
|
|
|
(SPACY, []),
|
|
|
|
(TAG, [(nn, 0.1), (dt, 0.2), (jj, 0.01), (vbd, 0.05)]),
|
|
|
|
(DEP, {det: 0.2, nsubj: 0.1, adj: 0.05, root: 0.1}.items()),
|
|
|
|
(HEAD, {0: 0.05, 1: 0.2, -1: 0.2, -2: 0.1, 2: 0.1}.items())
|
|
|
|
]
|
|
|
|
|
|
|
|
packer = Packer(vocab, attr_freqs)
|
|
|
|
|
2015-07-18 20:46:40 +00:00
|
|
|
ids = [vocab[w].orth for w in 'the dog jumped'.split()]
|
2015-07-17 19:21:10 +00:00
|
|
|
msg = Doc.from_ids(vocab, ids, [1, 1, 0])
|
|
|
|
msg.from_array(
|
|
|
|
[TAG, DEP, HEAD],
|
|
|
|
numpy.array([
|
|
|
|
[dt, det, 1],
|
|
|
|
[nn, nsubj, 1],
|
|
|
|
[vbd, root, 0]
|
|
|
|
], dtype=numpy.int32))
|
|
|
|
|
|
|
|
assert msg.string == 'the dog jumped'
|
|
|
|
assert [t.tag_ for t in msg] == ['DT', 'NN', 'VBD']
|
|
|
|
assert [t.dep_ for t in msg] == ['det', 'nsubj', 'ROOT']
|
|
|
|
assert [(t.head.i - t.i) for t in msg] == [1, 1, 0]
|
|
|
|
|
|
|
|
bits = packer.pack(msg)
|
|
|
|
result = packer.unpack(bits)
|
|
|
|
|
|
|
|
assert result.string == 'the dog jumped'
|
|
|
|
assert [t.tag_ for t in result] == ['DT', 'NN', 'VBD']
|
|
|
|
assert [t.dep_ for t in result] == ['det', 'nsubj', 'ROOT']
|
|
|
|
assert [(t.head.i - t.i) for t in result] == [1, 1, 0]
|