spaCy/examples/sentiment/model.py

189 lines
6.2 KiB
Python
Raw Normal View History

2016-11-20 02:29:36 +00:00
from __future__ import division
from numpy import average, zeros, outer, random, exp, sqrt, concatenate, argmax
import numpy
from .util import Scorer
class Adagrad(object):
def __init__(self, dim, lr):
self.dim = dim
self.eps = 1e-3
# initial learning rate
self.learning_rate = lr
# stores sum of squared gradients
self.h = zeros(self.dim)
self._curr_rate = zeros(self.h.shape)
def rescale(self, gradient):
self._curr_rate.fill(0)
self.h += gradient ** 2
self._curr_rate = self.learning_rate / (sqrt(self.h) + self.eps)
return self._curr_rate * gradient
def reset_weights(self):
self.h = zeros(self.dim)
class Params(object):
@classmethod
def zero(cls, depth, n_embed, n_hidden, n_labels, n_vocab):
return cls(depth, n_embed, n_hidden, n_labels, n_vocab, lambda x: zeros((x,)))
@classmethod
def random(cls, depth, nE, nH, nL, nV):
return cls(depth, nE, nH, nL, nV, lambda x: (random.rand(x) * 2 - 1) * 0.08)
def __init__(self, depth, n_embed, n_hidden, n_labels, n_vocab, initializer):
nE = n_embed; nH = n_hidden; nL = n_labels; nV = n_vocab
n_weights = sum([
(nE * nH) + nH,
(nH * nH + nH) * depth,
(nH * nL) + nL,
(nV * nE)
])
self.data = initializer(n_weights)
self.W = []
self.b = []
i = self._add_layer(0, nE, nH)
for _ in range(1, depth):
i = self._add_layer(i, nH, nH)
i = self._add_layer(i, nL, nH)
self.E = self.data[i : i + (nV * nE)].reshape((nV, nE))
self.E.fill(0)
def _add_layer(self, start, x, y):
end = start + (x * y)
self.W.append(self.data[start : end].reshape((x, y)))
self.b.append(self.data[end : end + x].reshape((x, )))
return end + x
def softmax(actvn, W, b):
w = W.dot(actvn) + b
ew = exp(w - max(w))
return (ew / sum(ew)).ravel()
def relu(actvn, W, b):
x = W.dot(actvn) + b
return x * (x > 0)
def d_relu(x):
return x > 0
class Network(object):
def __init__(self, depth, n_embed, n_hidden, n_labels, n_vocab, rho=1e-4, lr=0.005):
self.depth = depth
self.n_embed = n_embed
self.n_hidden = n_hidden
self.n_labels = n_labels
self.n_vocab = n_vocab
self.params = Params.random(depth, n_embed, n_hidden, n_labels, n_vocab)
self.gradient = Params.zero(depth, n_embed, n_hidden, n_labels, n_vocab)
self.adagrad = Adagrad(self.params.data.shape, lr)
self.seen_words = {}
self.pred = zeros(self.n_labels)
self.actvn = zeros((self.depth, self.n_hidden))
self.input_vector = zeros((self.n_embed, ))
def forward(self, word_ids, embeddings):
self.input_vector.fill(0)
self.input_vector += sum(embeddings)
# Apply the fine-tuning we've learned
for id_ in word_ids:
if id_ < self.n_vocab:
self.input_vector += self.params.E[id_]
# Average
self.input_vector /= len(embeddings)
prev = self.input_vector
for i in range(self.depth):
self.actvn[i] = relu(prev, self.params.W[i], self.params.b[i])
return x * (x > 0)
prev = self.actvn[i]
self.pred = softmax(self.actvn[-1], self.params.W[-1], self.params.b[-1])
return argmax(self.pred)
def backward(self, word_ids, label):
target = zeros(self.n_labels)
target[label] = 1.0
D = self.pred - target
for i in range(self.depth, 0, -1):
self.gradient.b[i] += D
self.gradient.W[i] += outer(D, self.actvn[i-1])
D = d_relu(self.actvn[i-1]) * self.params.W[i].T.dot(D)
self.gradient.b[0] += D
self.gradient.W[0] += outer(D, self.input_vector)
grad = self.params.W[0].T.dot(D).reshape((self.n_embed,)) / len(word_ids)
for word_id in word_ids:
if word_id < self.n_vocab:
self.gradient.E[word_id] += grad
self.seen_words[word_id] = self.seen_words.get(word_id, 0) + 1
def update(self, rho, n):
# L2 Regularization
for i in range(self.depth):
self.gradient.W[i] += self.params.W[i] * rho
self.gradient.b[i] += self.params.b[i] * rho
# Do word embedding tuning
for word_id, freq in self.seen_words.items():
self.gradient.E[word_id] += (self.params.E[word_id] * freq) * rho
update = self.gradient.data / n
update = self.adagrad.rescale(update)
self.params.data -= update
self.gradient.data.fill(0)
self.seen_words = {}
def get_words(doc, dropout_rate, n_vocab):
mask = random.rand(len(doc)) > dropout_rate
word_ids = []
embeddings = []
for word in doc:
if mask[word.i] and not word.is_punct:
embeddings.append(word.vector)
word_ids.append(word.orth)
# all examples must have at least one word
if not embeddings:
return [w.orth for w in doc], [w.vector for w in doc]
else:
return word_ids, embeddings
def train(dataset, n_embed, n_hidden, n_labels, n_vocab, depth, dropout_rate, rho,
n_iter, save_model):
model = Network(depth, n_embed, n_hidden, n_labels, n_vocab)
best_acc = 0
for epoch in range(n_iter):
train_score = Scorer()
# create mini-batches
for batch in dataset.batches(dataset.train):
for doc, label in batch:
if len(doc) == 0:
continue
word_ids, embeddings = get_words(doc, dropout_rate, n_vocab)
guess = model.forward(word_ids, embeddings)
model.backward(word_ids, label)
train_score += guess == label
model.update(rho, len(batch))
test_score = Scorer()
for doc, label in dataset.dev:
word_ids, embeddings = get_words(doc, 0.0, n_vocab)
guess = model.forward(word_ids, embeddings)
test_score += guess == label
if test_score.true >= best_acc:
best_acc = test_score.true
save_model(epoch, model.params.data)
print "%d\t%s\t%s" % (epoch, train_score, test_score)
return model