2019-03-19 16:39:35 +00:00
|
|
|
import pytest
|
|
|
|
|
|
|
|
from spacy.kb import KnowledgeBase
|
2020-03-06 13:42:23 +00:00
|
|
|
|
2020-07-22 11:42:59 +00:00
|
|
|
from spacy import util, registry
|
2020-07-06 11:02:36 +00:00
|
|
|
from spacy.gold import Example
|
2019-03-21 22:17:25 +00:00
|
|
|
from spacy.lang.en import English
|
2020-03-06 13:42:23 +00:00
|
|
|
from spacy.tests.util import make_tempdir
|
2019-09-16 13:18:37 +00:00
|
|
|
from spacy.tokens import Span
|
2019-03-19 16:39:35 +00:00
|
|
|
|
|
|
|
|
2019-03-21 22:17:25 +00:00
|
|
|
@pytest.fixture
|
|
|
|
def nlp():
|
|
|
|
return English()
|
|
|
|
|
|
|
|
|
2019-07-17 15:18:26 +00:00
|
|
|
def assert_almost_equal(a, b):
|
|
|
|
delta = 0.0001
|
|
|
|
assert a - delta <= b <= a + delta
|
|
|
|
|
|
|
|
|
2019-03-21 22:17:25 +00:00
|
|
|
def test_kb_valid_entities(nlp):
|
|
|
|
"""Test the valid construction of a KB with 3 entities and two aliases"""
|
2020-08-04 12:34:09 +00:00
|
|
|
mykb = KnowledgeBase(entity_vector_length=3)
|
|
|
|
mykb.initialize(nlp.vocab)
|
2019-03-19 16:39:35 +00:00
|
|
|
|
|
|
|
# adding entities
|
2019-08-13 13:38:59 +00:00
|
|
|
mykb.add_entity(entity="Q1", freq=19, entity_vector=[8, 4, 3])
|
|
|
|
mykb.add_entity(entity="Q2", freq=5, entity_vector=[2, 1, 0])
|
|
|
|
mykb.add_entity(entity="Q3", freq=25, entity_vector=[-1, -6, 5])
|
2019-03-19 16:39:35 +00:00
|
|
|
|
|
|
|
# adding aliases
|
2019-07-17 10:17:02 +00:00
|
|
|
mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.2])
|
|
|
|
mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
|
2019-03-19 20:50:32 +00:00
|
|
|
|
|
|
|
# test the size of the corresponding KB
|
2019-07-17 10:17:02 +00:00
|
|
|
assert mykb.get_size_entities() == 3
|
|
|
|
assert mykb.get_size_aliases() == 2
|
|
|
|
|
|
|
|
# test retrieval of the entity vectors
|
|
|
|
assert mykb.get_vector("Q1") == [8, 4, 3]
|
|
|
|
assert mykb.get_vector("Q2") == [2, 1, 0]
|
|
|
|
assert mykb.get_vector("Q3") == [-1, -6, 5]
|
2019-03-19 16:39:35 +00:00
|
|
|
|
2019-07-17 15:18:26 +00:00
|
|
|
# test retrieval of prior probabilities
|
|
|
|
assert_almost_equal(mykb.get_prior_prob(entity="Q2", alias="douglas"), 0.8)
|
|
|
|
assert_almost_equal(mykb.get_prior_prob(entity="Q3", alias="douglas"), 0.2)
|
2019-07-22 11:39:32 +00:00
|
|
|
assert_almost_equal(mykb.get_prior_prob(entity="Q342", alias="douglas"), 0.0)
|
|
|
|
assert_almost_equal(mykb.get_prior_prob(entity="Q3", alias="douglassssss"), 0.0)
|
2019-07-17 15:18:26 +00:00
|
|
|
|
2019-03-19 16:39:35 +00:00
|
|
|
|
2019-03-21 22:17:25 +00:00
|
|
|
def test_kb_invalid_entities(nlp):
|
2019-03-19 20:43:48 +00:00
|
|
|
"""Test the invalid construction of a KB with an alias linked to a non-existing entity"""
|
2020-08-04 12:34:09 +00:00
|
|
|
mykb = KnowledgeBase(entity_vector_length=1)
|
|
|
|
mykb.initialize(nlp.vocab)
|
2019-03-19 16:39:35 +00:00
|
|
|
|
|
|
|
# adding entities
|
2019-08-13 13:38:59 +00:00
|
|
|
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
|
|
|
|
mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
|
|
|
|
mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
|
2019-03-19 16:39:35 +00:00
|
|
|
|
|
|
|
# adding aliases - should fail because one of the given IDs is not valid
|
|
|
|
with pytest.raises(ValueError):
|
2019-07-17 10:17:02 +00:00
|
|
|
mykb.add_alias(
|
|
|
|
alias="douglas", entities=["Q2", "Q342"], probabilities=[0.8, 0.2]
|
|
|
|
)
|
2019-03-19 16:39:35 +00:00
|
|
|
|
2019-03-19 20:43:48 +00:00
|
|
|
|
2019-03-21 22:17:25 +00:00
|
|
|
def test_kb_invalid_probabilities(nlp):
|
2019-03-19 20:43:48 +00:00
|
|
|
"""Test the invalid construction of a KB with wrong prior probabilities"""
|
2020-08-04 12:34:09 +00:00
|
|
|
mykb = KnowledgeBase(entity_vector_length=1)
|
|
|
|
mykb.initialize(nlp.vocab)
|
2019-03-19 20:43:48 +00:00
|
|
|
|
|
|
|
# adding entities
|
2019-08-13 13:38:59 +00:00
|
|
|
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
|
|
|
|
mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
|
|
|
|
mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
|
2019-03-19 20:43:48 +00:00
|
|
|
|
|
|
|
# adding aliases - should fail because the sum of the probabilities exceeds 1
|
|
|
|
with pytest.raises(ValueError):
|
2019-07-17 10:17:02 +00:00
|
|
|
mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.4])
|
2019-03-19 20:43:48 +00:00
|
|
|
|
2019-03-19 20:55:10 +00:00
|
|
|
|
2019-03-21 22:17:25 +00:00
|
|
|
def test_kb_invalid_combination(nlp):
|
2019-03-19 20:55:10 +00:00
|
|
|
"""Test the invalid construction of a KB with non-matching entity and probability lists"""
|
2020-08-04 12:34:09 +00:00
|
|
|
mykb = KnowledgeBase(entity_vector_length=1)
|
|
|
|
mykb.initialize(nlp.vocab)
|
2019-03-19 20:55:10 +00:00
|
|
|
|
|
|
|
# adding entities
|
2019-08-13 13:38:59 +00:00
|
|
|
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
|
|
|
|
mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
|
|
|
|
mykb.add_entity(entity="Q3", freq=25, entity_vector=[3])
|
2019-03-19 20:55:10 +00:00
|
|
|
|
|
|
|
# adding aliases - should fail because the entities and probabilities vectors are not of equal length
|
|
|
|
with pytest.raises(ValueError):
|
2019-07-17 10:17:02 +00:00
|
|
|
mykb.add_alias(
|
|
|
|
alias="douglas", entities=["Q2", "Q3"], probabilities=[0.3, 0.4, 0.1]
|
|
|
|
)
|
2019-03-19 20:55:10 +00:00
|
|
|
|
2019-03-21 11:48:59 +00:00
|
|
|
|
2019-06-05 16:29:18 +00:00
|
|
|
def test_kb_invalid_entity_vector(nlp):
|
|
|
|
"""Test the invalid construction of a KB with non-matching entity vector lengths"""
|
2020-08-04 12:34:09 +00:00
|
|
|
mykb = KnowledgeBase(entity_vector_length=3)
|
|
|
|
mykb.initialize(nlp.vocab)
|
2019-06-05 16:29:18 +00:00
|
|
|
|
|
|
|
# adding entities
|
2019-08-13 13:38:59 +00:00
|
|
|
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1, 2, 3])
|
2019-06-05 16:29:18 +00:00
|
|
|
|
|
|
|
# this should fail because the kb's expected entity vector length is 3
|
|
|
|
with pytest.raises(ValueError):
|
2019-08-13 13:38:59 +00:00
|
|
|
mykb.add_entity(entity="Q2", freq=5, entity_vector=[2])
|
2019-06-05 16:29:18 +00:00
|
|
|
|
|
|
|
|
2020-08-04 12:34:09 +00:00
|
|
|
def test_kb_default(nlp):
|
|
|
|
"""Test that the default (empty) KB is loaded when not providing a config"""
|
|
|
|
entity_linker = nlp.add_pipe("entity_linker", config={})
|
|
|
|
assert len(entity_linker.kb) == 0
|
|
|
|
assert entity_linker.kb.get_size_entities() == 0
|
|
|
|
assert entity_linker.kb.get_size_aliases() == 0
|
|
|
|
assert entity_linker.kb.entity_vector_length == 64 # default value from pipeline.entity_linker
|
|
|
|
|
|
|
|
|
|
|
|
def test_kb_custom_length(nlp):
|
|
|
|
"""Test that the default (empty) KB can be configured with a custom entity length"""
|
|
|
|
entity_linker = nlp.add_pipe("entity_linker", config={"kb": {"entity_vector_length": 35}})
|
|
|
|
assert len(entity_linker.kb) == 0
|
|
|
|
assert entity_linker.kb.get_size_entities() == 0
|
|
|
|
assert entity_linker.kb.get_size_aliases() == 0
|
|
|
|
assert entity_linker.kb.entity_vector_length == 35
|
|
|
|
|
|
|
|
|
|
|
|
def test_kb_undefined(nlp):
|
|
|
|
"""Test that the EL can't train without defining a KB"""
|
|
|
|
entity_linker = nlp.add_pipe("entity_linker", config={})
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
entity_linker.begin_training()
|
|
|
|
|
|
|
|
|
|
|
|
def test_kb_empty(nlp):
|
|
|
|
"""Test that the EL can't train with an empty KB"""
|
|
|
|
config = {"kb": {"@assets": "spacy.EmptyKB.v1", "entity_vector_length": 342}}
|
|
|
|
entity_linker = nlp.add_pipe("entity_linker", config=config)
|
|
|
|
assert len(entity_linker.kb) == 0
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
entity_linker.begin_training()
|
|
|
|
|
|
|
|
|
2019-03-21 22:17:25 +00:00
|
|
|
def test_candidate_generation(nlp):
|
2019-03-21 11:48:59 +00:00
|
|
|
"""Test correct candidate generation"""
|
2020-08-04 12:34:09 +00:00
|
|
|
mykb = KnowledgeBase(entity_vector_length=1)
|
|
|
|
mykb.initialize(nlp.vocab)
|
2019-03-21 11:48:59 +00:00
|
|
|
|
|
|
|
# adding entities
|
2019-08-13 13:38:59 +00:00
|
|
|
mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
|
|
|
|
mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
|
|
|
|
mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
|
2019-03-21 11:48:59 +00:00
|
|
|
|
|
|
|
# adding aliases
|
2019-07-17 15:18:26 +00:00
|
|
|
mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1])
|
2019-07-17 10:17:02 +00:00
|
|
|
mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
|
2019-03-21 11:48:59 +00:00
|
|
|
|
|
|
|
# test the size of the relevant candidates
|
2019-07-17 10:17:02 +00:00
|
|
|
assert len(mykb.get_candidates("douglas")) == 2
|
|
|
|
assert len(mykb.get_candidates("adam")) == 1
|
|
|
|
assert len(mykb.get_candidates("shrubbery")) == 0
|
2019-06-25 13:28:51 +00:00
|
|
|
|
2019-07-17 15:18:26 +00:00
|
|
|
# test the content of the candidates
|
|
|
|
assert mykb.get_candidates("adam")[0].entity_ == "Q2"
|
|
|
|
assert mykb.get_candidates("adam")[0].alias_ == "adam"
|
2019-08-13 13:38:59 +00:00
|
|
|
assert_almost_equal(mykb.get_candidates("adam")[0].entity_freq, 12)
|
2019-07-17 15:18:26 +00:00
|
|
|
assert_almost_equal(mykb.get_candidates("adam")[0].prior_prob, 0.9)
|
|
|
|
|
2019-06-25 13:28:51 +00:00
|
|
|
|
2019-10-14 10:28:53 +00:00
|
|
|
def test_append_alias(nlp):
|
|
|
|
"""Test that we can append additional alias-entity pairs"""
|
2020-08-04 12:34:09 +00:00
|
|
|
mykb = KnowledgeBase(entity_vector_length=1)
|
|
|
|
mykb.initialize(nlp.vocab)
|
2019-10-14 10:28:53 +00:00
|
|
|
|
|
|
|
# adding entities
|
|
|
|
mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
|
|
|
|
mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
|
|
|
|
mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
|
|
|
|
|
|
|
|
# adding aliases
|
|
|
|
mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.4, 0.1])
|
|
|
|
mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
|
|
|
|
|
|
|
|
# test the size of the relevant candidates
|
|
|
|
assert len(mykb.get_candidates("douglas")) == 2
|
|
|
|
|
|
|
|
# append an alias
|
|
|
|
mykb.append_alias(alias="douglas", entity="Q1", prior_prob=0.2)
|
|
|
|
|
|
|
|
# test the size of the relevant candidates has been incremented
|
|
|
|
assert len(mykb.get_candidates("douglas")) == 3
|
|
|
|
|
|
|
|
# append the same alias-entity pair again should not work (will throw a warning)
|
2019-10-24 14:16:27 +00:00
|
|
|
with pytest.warns(UserWarning):
|
|
|
|
mykb.append_alias(alias="douglas", entity="Q1", prior_prob=0.3)
|
2019-10-14 10:28:53 +00:00
|
|
|
|
|
|
|
# test the size of the relevant candidates remained unchanged
|
|
|
|
assert len(mykb.get_candidates("douglas")) == 3
|
|
|
|
|
|
|
|
|
|
|
|
def test_append_invalid_alias(nlp):
|
|
|
|
"""Test that append an alias will throw an error if prior probs are exceeding 1"""
|
2020-08-04 12:34:09 +00:00
|
|
|
mykb = KnowledgeBase(entity_vector_length=1)
|
|
|
|
mykb.initialize(nlp.vocab)
|
2019-10-14 10:28:53 +00:00
|
|
|
|
|
|
|
# adding entities
|
|
|
|
mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
|
|
|
|
mykb.add_entity(entity="Q2", freq=12, entity_vector=[2])
|
|
|
|
mykb.add_entity(entity="Q3", freq=5, entity_vector=[3])
|
|
|
|
|
|
|
|
# adding aliases
|
|
|
|
mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1])
|
|
|
|
mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9])
|
|
|
|
|
|
|
|
# append an alias - should fail because the entities and probabilities vectors are not of equal length
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
mykb.append_alias(alias="douglas", entity="Q1", prior_prob=0.2)
|
|
|
|
|
|
|
|
|
2019-06-25 13:28:51 +00:00
|
|
|
def test_preserving_links_asdoc(nlp):
|
|
|
|
"""Test that Span.as_doc preserves the existing entity links"""
|
|
|
|
|
2020-07-22 11:42:59 +00:00
|
|
|
@registry.assets.register("myLocationsKB.v1")
|
|
|
|
def dummy_kb() -> KnowledgeBase:
|
2020-08-04 12:34:09 +00:00
|
|
|
mykb = KnowledgeBase(entity_vector_length=1)
|
|
|
|
mykb.initialize(nlp.vocab)
|
2020-07-22 11:42:59 +00:00
|
|
|
# adding entities
|
|
|
|
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
|
|
|
|
mykb.add_entity(entity="Q2", freq=8, entity_vector=[1])
|
|
|
|
# adding aliases
|
|
|
|
mykb.add_alias(alias="Boston", entities=["Q1"], probabilities=[0.7])
|
|
|
|
mykb.add_alias(alias="Denver", entities=["Q2"], probabilities=[0.6])
|
|
|
|
return mykb
|
2019-06-25 13:28:51 +00:00
|
|
|
|
|
|
|
# set up pipeline with NER (Entity Ruler) and NEL (prior probability only, model not trained)
|
2020-07-22 11:42:59 +00:00
|
|
|
nlp.add_pipe("sentencizer")
|
2019-07-17 10:17:02 +00:00
|
|
|
patterns = [
|
|
|
|
{"label": "GPE", "pattern": "Boston"},
|
|
|
|
{"label": "GPE", "pattern": "Denver"},
|
|
|
|
]
|
2020-07-22 11:42:59 +00:00
|
|
|
ruler = nlp.add_pipe("entity_ruler")
|
2019-06-25 13:28:51 +00:00
|
|
|
ruler.add_patterns(patterns)
|
2020-07-22 11:42:59 +00:00
|
|
|
el_config = {"kb": {"@assets": "myLocationsKB.v1"}, "incl_prior": False}
|
|
|
|
el_pipe = nlp.add_pipe("entity_linker", config=el_config, last=True)
|
2019-06-25 13:28:51 +00:00
|
|
|
el_pipe.begin_training()
|
2019-08-13 13:38:59 +00:00
|
|
|
el_pipe.incl_context = False
|
|
|
|
el_pipe.incl_prior = True
|
2019-06-25 13:28:51 +00:00
|
|
|
|
|
|
|
# test whether the entity links are preserved by the `as_doc()` function
|
|
|
|
text = "She lives in Boston. He lives in Denver."
|
|
|
|
doc = nlp(text)
|
|
|
|
for ent in doc.ents:
|
|
|
|
orig_text = ent.text
|
|
|
|
orig_kb_id = ent.kb_id_
|
|
|
|
sent_doc = ent.sent.as_doc()
|
|
|
|
for s_ent in sent_doc.ents:
|
|
|
|
if s_ent.text == orig_text:
|
|
|
|
assert s_ent.kb_id_ == orig_kb_id
|
2019-09-16 13:18:37 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_preserving_links_ents(nlp):
|
|
|
|
"""Test that doc.ents preserves KB annotations"""
|
|
|
|
text = "She lives in Boston. He lives in Denver."
|
|
|
|
doc = nlp(text)
|
|
|
|
assert len(list(doc.ents)) == 0
|
|
|
|
|
|
|
|
boston_ent = Span(doc, 3, 4, label="LOC", kb_id="Q1")
|
|
|
|
doc.ents = [boston_ent]
|
|
|
|
assert len(list(doc.ents)) == 1
|
|
|
|
assert list(doc.ents)[0].label_ == "LOC"
|
|
|
|
assert list(doc.ents)[0].kb_id_ == "Q1"
|
|
|
|
|
|
|
|
|
|
|
|
def test_preserving_links_ents_2(nlp):
|
|
|
|
"""Test that doc.ents preserves KB annotations"""
|
|
|
|
text = "She lives in Boston. He lives in Denver."
|
|
|
|
doc = nlp(text)
|
|
|
|
assert len(list(doc.ents)) == 0
|
|
|
|
|
|
|
|
loc = doc.vocab.strings.add("LOC")
|
|
|
|
q1 = doc.vocab.strings.add("Q1")
|
|
|
|
|
|
|
|
doc.ents = [(loc, q1, 3, 4)]
|
|
|
|
assert len(list(doc.ents)) == 1
|
|
|
|
assert list(doc.ents)[0].label_ == "LOC"
|
|
|
|
assert list(doc.ents)[0].kb_id_ == "Q1"
|
2020-03-06 13:42:23 +00:00
|
|
|
|
|
|
|
|
|
|
|
# fmt: off
|
|
|
|
TRAIN_DATA = [
|
2020-06-26 17:34:12 +00:00
|
|
|
("Russ Cochran captured his first major title with his son as caddie.",
|
|
|
|
{"links": {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}},
|
|
|
|
"entities": [(0, 12, "PERSON")]}),
|
|
|
|
("Russ Cochran his reprints include EC Comics.",
|
|
|
|
{"links": {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}},
|
|
|
|
"entities": [(0, 12, "PERSON")]}),
|
|
|
|
("Russ Cochran has been publishing comic art.",
|
|
|
|
{"links": {(0, 12): {"Q7381115": 1.0, "Q2146908": 0.0}},
|
|
|
|
"entities": [(0, 12, "PERSON")]}),
|
|
|
|
("Russ Cochran was a member of University of Kentucky's golf team.",
|
|
|
|
{"links": {(0, 12): {"Q7381115": 0.0, "Q2146908": 1.0}},
|
|
|
|
"entities": [(0, 12, "PERSON"), (43, 51, "LOC")]}),
|
2020-03-06 13:42:23 +00:00
|
|
|
]
|
|
|
|
GOLD_entities = ["Q2146908", "Q7381115", "Q7381115", "Q2146908"]
|
|
|
|
# fmt: on
|
|
|
|
|
|
|
|
|
|
|
|
def test_overfitting_IO():
|
|
|
|
# Simple test to try and quickly overfit the NEL component - ensuring the ML models work correctly
|
|
|
|
nlp = English()
|
2020-07-22 11:42:59 +00:00
|
|
|
nlp.add_pipe("sentencizer")
|
2020-03-06 13:42:23 +00:00
|
|
|
|
|
|
|
# Add a custom component to recognize "Russ Cochran" as an entity for the example training data
|
2020-06-20 12:15:04 +00:00
|
|
|
patterns = [
|
|
|
|
{"label": "PERSON", "pattern": [{"LOWER": "russ"}, {"LOWER": "cochran"}]}
|
|
|
|
]
|
2020-07-22 11:42:59 +00:00
|
|
|
ruler = nlp.add_pipe("entity_ruler")
|
2020-03-06 13:42:23 +00:00
|
|
|
ruler.add_patterns(patterns)
|
|
|
|
|
|
|
|
# Convert the texts to docs to make sure we have doc.ents set for the training examples
|
2020-07-06 11:02:36 +00:00
|
|
|
train_examples = []
|
2020-03-06 13:42:23 +00:00
|
|
|
for text, annotation in TRAIN_DATA:
|
|
|
|
doc = nlp(text)
|
2020-07-06 11:02:36 +00:00
|
|
|
train_examples.append(Example.from_dict(doc, annotation))
|
2020-03-06 13:42:23 +00:00
|
|
|
|
2020-07-22 11:42:59 +00:00
|
|
|
@registry.assets.register("myOverfittingKB.v1")
|
|
|
|
def dummy_kb() -> KnowledgeBase:
|
|
|
|
# create artificial KB - assign same prior weight to the two russ cochran's
|
|
|
|
# Q2146908 (Russ Cochran): American golfer
|
|
|
|
# Q7381115 (Russ Cochran): publisher
|
2020-08-04 12:34:09 +00:00
|
|
|
mykb = KnowledgeBase(entity_vector_length=3)
|
|
|
|
mykb.initialize(nlp.vocab)
|
2020-07-22 11:42:59 +00:00
|
|
|
mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
|
|
|
|
mykb.add_entity(entity="Q7381115", freq=12, entity_vector=[9, 1, -7])
|
|
|
|
mykb.add_alias(
|
|
|
|
alias="Russ Cochran",
|
|
|
|
entities=["Q2146908", "Q7381115"],
|
|
|
|
probabilities=[0.5, 0.5],
|
|
|
|
)
|
|
|
|
return mykb
|
2020-03-06 13:42:23 +00:00
|
|
|
|
|
|
|
# Create the Entity Linker component and add it to the pipeline
|
2020-07-22 11:42:59 +00:00
|
|
|
nlp.add_pipe(
|
|
|
|
"entity_linker", config={"kb": {"@assets": "myOverfittingKB.v1"}}, last=True
|
|
|
|
)
|
2020-03-06 13:42:23 +00:00
|
|
|
|
|
|
|
# train the NEL pipe
|
|
|
|
optimizer = nlp.begin_training()
|
|
|
|
for i in range(50):
|
|
|
|
losses = {}
|
2020-07-06 11:02:36 +00:00
|
|
|
nlp.update(train_examples, sgd=optimizer, losses=losses)
|
2020-03-06 13:42:23 +00:00
|
|
|
assert losses["entity_linker"] < 0.001
|
|
|
|
|
|
|
|
# test the trained model
|
|
|
|
predictions = []
|
|
|
|
for text, annotation in TRAIN_DATA:
|
|
|
|
doc = nlp(text)
|
|
|
|
for ent in doc.ents:
|
|
|
|
predictions.append(ent.kb_id_)
|
|
|
|
assert predictions == GOLD_entities
|
|
|
|
|
|
|
|
# Also test the results are still the same after IO
|
|
|
|
with make_tempdir() as tmp_dir:
|
|
|
|
nlp.to_disk(tmp_dir)
|
|
|
|
nlp2 = util.load_model_from_path(tmp_dir)
|
2020-07-22 11:42:59 +00:00
|
|
|
assert nlp2.pipe_names == nlp.pipe_names
|
2020-03-06 13:42:23 +00:00
|
|
|
predictions = []
|
|
|
|
for text, annotation in TRAIN_DATA:
|
|
|
|
doc2 = nlp2(text)
|
|
|
|
for ent in doc2.ents:
|
|
|
|
predictions.append(ent.kb_id_)
|
|
|
|
assert predictions == GOLD_entities
|