spaCy/spacy/tagger.pyx

168 lines
5.1 KiB
Cython
Raw Normal View History

# cython: profile=True
from __future__ import unicode_literals
from __future__ import division
from .context cimport fill_context
from .context cimport N_FIELDS
from os import path
import os
import shutil
import random
import json
import cython
from thinc.features cimport Feature, count_feats
NULL_TAG = 0
def setup_model_dir(tag_type, tag_names, templates, model_dir):
if path.exists(model_dir):
shutil.rmtree(model_dir)
os.mkdir(model_dir)
config = {
'tag_type': tag_type,
'templates': templates,
'tag_names': tag_names,
}
with open(path.join(model_dir, 'config.json'), 'w') as file_:
json.dump(config, file_)
def train(train_sents, model_dir, nr_iter=10):
cdef Tokens tokens
cdef Tagger tagger = Tagger(model_dir)
cdef int i
for _ in range(nr_iter):
n_corr = 0
total = 0
for tokens, golds in train_sents:
assert len(tokens) == len(golds), [t.string for t in tokens]
for i in range(tokens.length):
if tagger.tag_type == POS:
gold = _get_gold_pos(i, golds)
else:
raise StandardError
guess = tagger.predict(i, tokens)
tokens.set_tag(i, tagger.tag_type, guess)
if gold is not None:
tagger.tell_answer(gold)
total += 1
n_corr += guess in gold
#print('%s\t%d\t%d' % (tokens[i].string, guess, gold))
print('%.4f' % ((n_corr / total) * 100))
random.shuffle(train_sents)
tagger.model.end_training()
tagger.model.dump(path.join(model_dir, 'model'))
cdef object _get_gold_pos(i, golds):
if golds[i] == 0:
return None
else:
return [golds[i]]
cdef object _get_gold_ner(i, golds, int* ner):
if golds[i] == 0:
return None
else:
return [golds[i]]
def evaluate(tagger, sents):
n_corr = 0
total = 0
for tokens, golds in sents:
for i, gold in enumerate(golds):
guess = tagger.predict(i, tokens)
tokens.set_tag(i, tagger.tag_type, guess)
if gold != NULL_TAG:
total += 1
n_corr += guess == gold
return n_corr / total
cdef class Tagger:
"""Assign part-of-speech, named entity or supersense tags, using greedy
decoding. The tagger reads its model and configuration from disk.
"""
def __init__(self, model_dir):
self.mem = Pool()
cfg = json.load(open(path.join(model_dir, 'config.json')))
templates = cfg['templates']
self.tag_names = cfg['tag_names']
self.tag_type = cfg['tag_type']
self.extractor = Extractor(templates)
self.model = LinearModel(len(self.tag_names))
if path.exists(path.join(model_dir, 'model')):
self.model.load(path.join(model_dir, 'model'))
cpdef int set_tags(self, Tokens tokens) except -1:
"""Assign tags to a Tokens object.
>>> tokens = EN.tokenize(u'An example sentence.')
>>> assert tokens[0].pos == 'NO_TAG'
>>> EN.pos_tagger.set_tags(tokens)
>>> assert tokens[0].pos == 'DT'
"""
cdef int i
for i in range(tokens.length):
tokens.set_tag(i, self.tag_type, self.predict(i, tokens))
cpdef class_t predict(self, int i, Tokens tokens, object golds=None) except 0:
"""Predict the tag of tokens[i]. The tagger remembers the features and
prediction, in case you later call tell_answer.
>>> tokens = EN.tokenize(u'An example sentence.')
>>> tag = EN.pos_tagger.predict(0, tokens)
>>> assert tag == EN.pos_tagger.tag_id('DT') == 5
"""
cdef int n_feats
cdef atom_t[N_FIELDS] context
print sizeof(context)
fill_context(context, i, tokens.data)
cdef Feature* feats = self.extractor.get_feats(context, &n_feats)
cdef weight_t* scores = self.model.get_scores(feats, n_feats)
cdef class_t guess = _arg_max(scores, self.nr_class)
if golds is not None and guess not in golds:
best = _arg_max_among(scores, golds)
counts = {}
count_feats(counts[guess], feats, n_feats, -1)
count_feats(counts[best], feats, n_feats, 1)
self.model.update(counts)
return guess
def tag_id(self, object tag_name):
"""Encode tag_name into a tag ID integer."""
tag_id = self.tag_names.index(tag_name)
if tag_id == -1:
tag_id = len(self.tag_names)
self.tag_names.append(tag_name)
return tag_id
cdef class_t _arg_max(weight_t* scores, int n_classes):
cdef int best = 0
cdef weight_t score = scores[best]
cdef int i
for i in range(1, n_classes):
if scores[i] > score:
score = scores[i]
best = i
return best
cdef class_t _arg_max_among(weight_t* scores, list classes):
cdef int best = classes[0]
cdef weight_t score = scores[best]
cdef class_t clas
for clas in classes:
if scores[clas] > score:
score = scores[clas]
best = clas
return best