2014-11-04 13:37:59 +00:00
|
|
|
# cython: profile=True
|
2014-11-04 16:42:14 +00:00
|
|
|
from __future__ import unicode_literals
|
|
|
|
from __future__ import division
|
|
|
|
|
2014-12-07 04:29:04 +00:00
|
|
|
from .context cimport fill_context
|
|
|
|
from .context cimport N_FIELDS
|
|
|
|
|
2014-11-04 13:37:59 +00:00
|
|
|
from os import path
|
|
|
|
import os
|
|
|
|
import shutil
|
|
|
|
import random
|
|
|
|
import json
|
|
|
|
import cython
|
|
|
|
|
2014-12-07 04:29:04 +00:00
|
|
|
from thinc.features cimport Feature, count_feats
|
2014-11-04 13:37:59 +00:00
|
|
|
|
2014-11-04 16:42:14 +00:00
|
|
|
|
2014-11-04 13:37:59 +00:00
|
|
|
NULL_TAG = 0
|
|
|
|
|
|
|
|
|
2014-11-04 16:42:14 +00:00
|
|
|
def setup_model_dir(tag_type, tag_names, templates, model_dir):
|
|
|
|
if path.exists(model_dir):
|
|
|
|
shutil.rmtree(model_dir)
|
|
|
|
os.mkdir(model_dir)
|
|
|
|
config = {
|
|
|
|
'tag_type': tag_type,
|
|
|
|
'templates': templates,
|
|
|
|
'tag_names': tag_names,
|
|
|
|
}
|
|
|
|
with open(path.join(model_dir, 'config.json'), 'w') as file_:
|
|
|
|
json.dump(config, file_)
|
|
|
|
|
|
|
|
|
2014-11-06 17:42:04 +00:00
|
|
|
def train(train_sents, model_dir, nr_iter=10):
|
2014-11-09 04:43:07 +00:00
|
|
|
cdef Tokens tokens
|
2014-12-07 04:29:04 +00:00
|
|
|
cdef Tagger tagger = Tagger(model_dir)
|
|
|
|
cdef int i
|
2014-11-04 16:42:14 +00:00
|
|
|
for _ in range(nr_iter):
|
|
|
|
n_corr = 0
|
|
|
|
total = 0
|
|
|
|
for tokens, golds in train_sents:
|
|
|
|
assert len(tokens) == len(golds), [t.string for t in tokens]
|
2014-11-09 04:43:07 +00:00
|
|
|
for i in range(tokens.length):
|
|
|
|
if tagger.tag_type == POS:
|
2014-12-07 04:29:04 +00:00
|
|
|
gold = _get_gold_pos(i, golds)
|
|
|
|
else:
|
|
|
|
raise StandardError
|
|
|
|
|
2014-11-04 16:42:14 +00:00
|
|
|
guess = tagger.predict(i, tokens)
|
|
|
|
tokens.set_tag(i, tagger.tag_type, guess)
|
2014-11-09 04:43:07 +00:00
|
|
|
if gold is not None:
|
|
|
|
tagger.tell_answer(gold)
|
2014-11-04 16:42:14 +00:00
|
|
|
total += 1
|
2014-11-09 04:43:07 +00:00
|
|
|
n_corr += guess in gold
|
2014-11-05 09:45:29 +00:00
|
|
|
#print('%s\t%d\t%d' % (tokens[i].string, guess, gold))
|
2014-11-04 16:42:14 +00:00
|
|
|
print('%.4f' % ((n_corr / total) * 100))
|
|
|
|
random.shuffle(train_sents)
|
|
|
|
tagger.model.end_training()
|
2014-11-06 17:42:04 +00:00
|
|
|
tagger.model.dump(path.join(model_dir, 'model'))
|
2014-11-04 16:42:14 +00:00
|
|
|
|
|
|
|
|
2014-12-07 04:29:04 +00:00
|
|
|
cdef object _get_gold_pos(i, golds):
|
2014-11-09 04:43:07 +00:00
|
|
|
if golds[i] == 0:
|
|
|
|
return None
|
|
|
|
else:
|
|
|
|
return [golds[i]]
|
|
|
|
|
|
|
|
|
|
|
|
cdef object _get_gold_ner(i, golds, int* ner):
|
|
|
|
if golds[i] == 0:
|
|
|
|
return None
|
|
|
|
else:
|
|
|
|
return [golds[i]]
|
|
|
|
|
|
|
|
|
2014-11-04 16:42:14 +00:00
|
|
|
def evaluate(tagger, sents):
|
|
|
|
n_corr = 0
|
|
|
|
total = 0
|
|
|
|
for tokens, golds in sents:
|
|
|
|
for i, gold in enumerate(golds):
|
|
|
|
guess = tagger.predict(i, tokens)
|
|
|
|
tokens.set_tag(i, tagger.tag_type, guess)
|
|
|
|
if gold != NULL_TAG:
|
|
|
|
total += 1
|
|
|
|
n_corr += guess == gold
|
|
|
|
return n_corr / total
|
|
|
|
|
|
|
|
|
2014-11-04 13:37:59 +00:00
|
|
|
cdef class Tagger:
|
|
|
|
"""Assign part-of-speech, named entity or supersense tags, using greedy
|
|
|
|
decoding. The tagger reads its model and configuration from disk.
|
|
|
|
"""
|
|
|
|
def __init__(self, model_dir):
|
|
|
|
self.mem = Pool()
|
2014-11-04 16:42:14 +00:00
|
|
|
cfg = json.load(open(path.join(model_dir, 'config.json')))
|
2014-11-04 13:37:59 +00:00
|
|
|
templates = cfg['templates']
|
|
|
|
self.tag_names = cfg['tag_names']
|
|
|
|
self.tag_type = cfg['tag_type']
|
2014-12-07 04:29:04 +00:00
|
|
|
self.extractor = Extractor(templates)
|
2014-11-05 09:45:29 +00:00
|
|
|
self.model = LinearModel(len(self.tag_names))
|
2014-11-04 13:37:59 +00:00
|
|
|
if path.exists(path.join(model_dir, 'model')):
|
|
|
|
self.model.load(path.join(model_dir, 'model'))
|
|
|
|
|
|
|
|
cpdef int set_tags(self, Tokens tokens) except -1:
|
|
|
|
"""Assign tags to a Tokens object.
|
|
|
|
|
|
|
|
>>> tokens = EN.tokenize(u'An example sentence.')
|
|
|
|
>>> assert tokens[0].pos == 'NO_TAG'
|
|
|
|
>>> EN.pos_tagger.set_tags(tokens)
|
|
|
|
>>> assert tokens[0].pos == 'DT'
|
|
|
|
"""
|
|
|
|
cdef int i
|
|
|
|
for i in range(tokens.length):
|
|
|
|
tokens.set_tag(i, self.tag_type, self.predict(i, tokens))
|
|
|
|
|
2014-12-07 04:29:04 +00:00
|
|
|
cpdef class_t predict(self, int i, Tokens tokens, object golds=None) except 0:
|
2014-11-04 13:37:59 +00:00
|
|
|
"""Predict the tag of tokens[i]. The tagger remembers the features and
|
|
|
|
prediction, in case you later call tell_answer.
|
|
|
|
|
|
|
|
>>> tokens = EN.tokenize(u'An example sentence.')
|
|
|
|
>>> tag = EN.pos_tagger.predict(0, tokens)
|
|
|
|
>>> assert tag == EN.pos_tagger.tag_id('DT') == 5
|
|
|
|
"""
|
2014-12-07 04:29:04 +00:00
|
|
|
cdef int n_feats
|
|
|
|
cdef atom_t[N_FIELDS] context
|
|
|
|
print sizeof(context)
|
|
|
|
fill_context(context, i, tokens.data)
|
|
|
|
cdef Feature* feats = self.extractor.get_feats(context, &n_feats)
|
|
|
|
cdef weight_t* scores = self.model.get_scores(feats, n_feats)
|
|
|
|
cdef class_t guess = _arg_max(scores, self.nr_class)
|
|
|
|
if golds is not None and guess not in golds:
|
|
|
|
best = _arg_max_among(scores, golds)
|
|
|
|
counts = {}
|
|
|
|
count_feats(counts[guess], feats, n_feats, -1)
|
|
|
|
count_feats(counts[best], feats, n_feats, 1)
|
|
|
|
self.model.update(counts)
|
|
|
|
return guess
|
2014-11-04 13:37:59 +00:00
|
|
|
|
|
|
|
def tag_id(self, object tag_name):
|
|
|
|
"""Encode tag_name into a tag ID integer."""
|
|
|
|
tag_id = self.tag_names.index(tag_name)
|
|
|
|
if tag_id == -1:
|
|
|
|
tag_id = len(self.tag_names)
|
|
|
|
self.tag_names.append(tag_name)
|
|
|
|
return tag_id
|
2014-12-07 04:29:04 +00:00
|
|
|
|
|
|
|
|
|
|
|
cdef class_t _arg_max(weight_t* scores, int n_classes):
|
|
|
|
cdef int best = 0
|
|
|
|
cdef weight_t score = scores[best]
|
|
|
|
cdef int i
|
|
|
|
for i in range(1, n_classes):
|
|
|
|
if scores[i] > score:
|
|
|
|
score = scores[i]
|
|
|
|
best = i
|
|
|
|
return best
|
|
|
|
|
|
|
|
|
|
|
|
cdef class_t _arg_max_among(weight_t* scores, list classes):
|
|
|
|
cdef int best = classes[0]
|
|
|
|
cdef weight_t score = scores[best]
|
|
|
|
cdef class_t clas
|
|
|
|
for clas in classes:
|
|
|
|
if scores[clas] > score:
|
|
|
|
score = scores[clas]
|
|
|
|
best = clas
|
|
|
|
return best
|