2016-10-31 18:04:15 +00:00
|
|
|
|
//- 💫 DOCS > API > DOC
|
|
|
|
|
|
2017-10-03 12:27:22 +00:00
|
|
|
|
include ../_includes/_mixins
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
2017-05-18 20:17:09 +00:00
|
|
|
|
p
|
|
|
|
|
| A #[code Doc] is a sequence of #[+api("token") #[code Token]] objects.
|
|
|
|
|
| Access sentences and named entities, export annotations to numpy arrays,
|
|
|
|
|
| losslessly serialize to compressed binary strings. The #[code Doc] object
|
|
|
|
|
| holds an array of #[code TokenC] structs. The Python-level #[code Token]
|
|
|
|
|
| and #[+api("span") #[code Span]] objects are views of this array, i.e.
|
|
|
|
|
| they don't own the data themselves.
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
2017-05-18 20:17:09 +00:00
|
|
|
|
+aside-code("Example").
|
|
|
|
|
# Construction 1
|
|
|
|
|
doc = nlp(u'Some text')
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
2017-05-18 20:17:09 +00:00
|
|
|
|
# Construction 2
|
|
|
|
|
from spacy.tokens import Doc
|
2017-06-08 08:35:58 +00:00
|
|
|
|
doc = Doc(nlp.vocab, words=[u'hello', u'world', u'!'],
|
2017-05-18 20:17:09 +00:00
|
|
|
|
spaces=[True, False, False])
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
|
|
|
|
+h(2, "init") Doc.__init__
|
|
|
|
|
+tag method
|
|
|
|
|
|
2017-05-18 20:17:09 +00:00
|
|
|
|
p
|
|
|
|
|
| Construct a #[code Doc] object. The most common way to get a #[code Doc]
|
|
|
|
|
| object is via the #[code nlp] object.
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code vocab]
|
|
|
|
|
+cell #[code Vocab]
|
|
|
|
|
+cell A storage container for lexical types.
|
|
|
|
|
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code words]
|
|
|
|
|
+cell -
|
|
|
|
|
+cell A list of strings to add to the container.
|
|
|
|
|
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code spaces]
|
|
|
|
|
+cell -
|
|
|
|
|
+cell
|
|
|
|
|
| A list of boolean values indicating whether each word has a
|
|
|
|
|
| subsequent space. Must have the same length as #[code words], if
|
|
|
|
|
| specified. Defaults to a sequence of #[code True].
|
|
|
|
|
|
2017-10-03 12:27:22 +00:00
|
|
|
|
+row("foot")
|
2017-05-18 22:02:34 +00:00
|
|
|
|
+cell returns
|
2016-10-31 18:04:15 +00:00
|
|
|
|
+cell #[code Doc]
|
|
|
|
|
+cell The newly constructed object.
|
|
|
|
|
|
|
|
|
|
+h(2, "getitem") Doc.__getitem__
|
|
|
|
|
+tag method
|
|
|
|
|
|
2017-05-18 20:17:09 +00:00
|
|
|
|
p
|
|
|
|
|
| Get a #[+api("token") #[code Token]] object at position #[code i], where
|
|
|
|
|
| #[code i] is an integer. Negative indexing is supported, and follows the
|
|
|
|
|
| usual Python semantics, i.e. #[code doc[-2]] is #[code doc[len(doc) - 2]].
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
|
|
|
|
+aside-code("Example").
|
|
|
|
|
doc = nlp(u'Give it back! He pleaded.')
|
|
|
|
|
assert doc[0].text == 'Give'
|
|
|
|
|
assert doc[-1].text == '.'
|
2017-06-03 09:31:30 +00:00
|
|
|
|
span = doc[1:3]
|
2016-10-31 18:04:15 +00:00
|
|
|
|
assert span.text == 'it back'
|
|
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code i]
|
|
|
|
|
+cell int
|
|
|
|
|
+cell The index of the token.
|
|
|
|
|
|
2017-10-03 12:27:22 +00:00
|
|
|
|
+row("foot")
|
2017-05-18 22:02:34 +00:00
|
|
|
|
+cell returns
|
2016-10-31 18:04:15 +00:00
|
|
|
|
+cell #[code Token]
|
|
|
|
|
+cell The token at #[code doc[i]].
|
|
|
|
|
|
2017-05-18 20:17:09 +00:00
|
|
|
|
p
|
|
|
|
|
| Get a #[+api("span") #[code Span]] object, starting at position
|
|
|
|
|
| #[code start] (token index) and ending at position #[code end] (token
|
|
|
|
|
| index).
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
| For instance, #[code doc[2:5]] produces a span consisting of tokens 2, 3
|
|
|
|
|
| and 4. Stepped slices (e.g. #[code doc[start : end : step]]) are not
|
|
|
|
|
| supported, as #[code Span] objects must be contiguous (cannot have gaps).
|
|
|
|
|
| You can use negative indices and open-ended ranges, which have their
|
|
|
|
|
| normal Python semantics.
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code start_end]
|
|
|
|
|
+cell tuple
|
|
|
|
|
+cell The slice of the document to get.
|
|
|
|
|
|
2017-10-03 12:27:22 +00:00
|
|
|
|
+row("foot")
|
2017-05-18 22:02:34 +00:00
|
|
|
|
+cell returns
|
2016-10-31 18:04:15 +00:00
|
|
|
|
+cell #[code Span]
|
|
|
|
|
+cell The span at #[code doc[start : end]].
|
|
|
|
|
|
|
|
|
|
+h(2, "iter") Doc.__iter__
|
|
|
|
|
+tag method
|
|
|
|
|
|
2017-05-18 20:17:09 +00:00
|
|
|
|
p
|
|
|
|
|
| Iterate over #[code Token] objects, from which the annotations can be
|
|
|
|
|
| easily accessed.
|
|
|
|
|
|
|
|
|
|
+aside-code("Example").
|
2017-05-19 17:59:02 +00:00
|
|
|
|
doc = nlp(u'Give it back')
|
|
|
|
|
assert [t.text for t in doc] == [u'Give', u'it', u'back']
|
2017-05-18 20:17:09 +00:00
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
| This is the main way of accessing #[+api("token") #[code Token]] objects,
|
|
|
|
|
| which are the main way annotations are accessed from Python. If
|
|
|
|
|
| faster-than-Python speeds are required, you can instead access the
|
|
|
|
|
| annotations as a numpy array, or access the underlying C data directly
|
|
|
|
|
| from Cython.
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
2017-10-03 12:27:22 +00:00
|
|
|
|
+row("foot")
|
2017-05-18 22:02:34 +00:00
|
|
|
|
+cell yields
|
2016-10-31 18:04:15 +00:00
|
|
|
|
+cell #[code Token]
|
|
|
|
|
+cell A #[code Token] object.
|
|
|
|
|
|
|
|
|
|
+h(2, "len") Doc.__len__
|
|
|
|
|
+tag method
|
|
|
|
|
|
|
|
|
|
p Get the number of tokens in the document.
|
|
|
|
|
|
2017-05-18 20:17:09 +00:00
|
|
|
|
+aside-code("Example").
|
|
|
|
|
doc = nlp(u'Give it back! He pleaded.')
|
|
|
|
|
assert len(doc) == 7
|
|
|
|
|
|
2016-10-31 18:04:15 +00:00
|
|
|
|
+table(["Name", "Type", "Description"])
|
2017-10-03 12:27:22 +00:00
|
|
|
|
+row("foot")
|
2017-05-18 22:02:34 +00:00
|
|
|
|
+cell returns
|
2016-10-31 18:04:15 +00:00
|
|
|
|
+cell int
|
|
|
|
|
+cell The number of tokens in the document.
|
|
|
|
|
|
2017-10-10 02:23:37 +00:00
|
|
|
|
+h(2, "set_extension") Doc.set_extension
|
|
|
|
|
+tag classmethod
|
|
|
|
|
+tag-new(2)
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
| Define a custom attribute on the #[code Doc] which becomes available via
|
|
|
|
|
| #[code Doc._]. For details, see the documentation on
|
|
|
|
|
| #[+a("/usage/processing-pipelines#custom-components-attributes") custom attributes].
|
|
|
|
|
|
|
|
|
|
+aside-code("Example").
|
2017-10-11 00:30:40 +00:00
|
|
|
|
from spacy.tokens import Doc
|
2018-05-02 08:16:05 +00:00
|
|
|
|
city_getter = lambda doc: any(city in doc.text for city in ('New York', 'Paris', 'Berlin'))
|
2017-10-10 02:23:37 +00:00
|
|
|
|
Doc.set_extension('has_city', getter=city_getter)
|
|
|
|
|
doc = nlp(u'I like New York')
|
|
|
|
|
assert doc._.has_city
|
|
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code name]
|
|
|
|
|
+cell unicode
|
|
|
|
|
+cell
|
|
|
|
|
| Name of the attribute to set by the extension. For example,
|
|
|
|
|
| #[code 'my_attr'] will be available as #[code doc._.my_attr].
|
|
|
|
|
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code default]
|
|
|
|
|
+cell -
|
|
|
|
|
+cell
|
|
|
|
|
| Optional default value of the attribute if no getter or method
|
|
|
|
|
| is defined.
|
|
|
|
|
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code method]
|
|
|
|
|
+cell callable
|
|
|
|
|
+cell
|
|
|
|
|
| Set a custom method on the object, for example
|
|
|
|
|
| #[code doc._.compare(other_doc)].
|
|
|
|
|
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code getter]
|
|
|
|
|
+cell callable
|
|
|
|
|
+cell
|
|
|
|
|
| Getter function that takes the object and returns an attribute
|
|
|
|
|
| value. Is called when the user accesses the #[code ._] attribute.
|
|
|
|
|
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code setter]
|
|
|
|
|
+cell callable
|
|
|
|
|
+cell
|
|
|
|
|
| Setter function that takes the #[code Doc] and a value, and
|
|
|
|
|
| modifies the object. Is called when the user writes to the
|
|
|
|
|
| #[code Doc._] attribute.
|
|
|
|
|
|
|
|
|
|
+h(2, "get_extension") Doc.get_extension
|
|
|
|
|
+tag classmethod
|
|
|
|
|
+tag-new(2)
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
| Look up a previously registered extension by name. Returns a 4-tuple
|
|
|
|
|
| #[code.u-break (default, method, getter, setter)] if the extension is
|
|
|
|
|
| registered. Raises a #[code KeyError] otherwise.
|
|
|
|
|
|
|
|
|
|
+aside-code("Example").
|
2017-10-11 00:30:40 +00:00
|
|
|
|
from spacy.tokens import Doc
|
2018-07-21 13:51:11 +00:00
|
|
|
|
Doc.set_extension('has_city', default=False)
|
|
|
|
|
extension = Doc.get_extension('has_city')
|
2017-10-10 02:23:37 +00:00
|
|
|
|
assert extension == (False, None, None, None)
|
|
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code name]
|
|
|
|
|
+cell unicode
|
|
|
|
|
+cell Name of the extension.
|
|
|
|
|
|
|
|
|
|
+row("foot")
|
|
|
|
|
+cell returns
|
|
|
|
|
+cell tuple
|
|
|
|
|
+cell
|
|
|
|
|
| A #[code.u-break (default, method, getter, setter)] tuple of the
|
|
|
|
|
| extension.
|
|
|
|
|
|
|
|
|
|
+h(2, "has_extension") Doc.has_extension
|
|
|
|
|
+tag classmethod
|
|
|
|
|
+tag-new(2)
|
|
|
|
|
|
|
|
|
|
p Check whether an extension has been registered on the #[code Doc] class.
|
|
|
|
|
|
|
|
|
|
+aside-code("Example").
|
2017-10-11 00:30:40 +00:00
|
|
|
|
from spacy.tokens import Doc
|
2018-07-21 13:51:11 +00:00
|
|
|
|
Doc.set_extension('has_city', default=False)
|
|
|
|
|
assert Doc.has_extension('has_city')
|
2017-10-10 02:23:37 +00:00
|
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code name]
|
|
|
|
|
+cell unicode
|
|
|
|
|
+cell Name of the extension to check.
|
|
|
|
|
|
|
|
|
|
+row("foot")
|
|
|
|
|
+cell returns
|
|
|
|
|
+cell bool
|
|
|
|
|
+cell Whether the extension has been registered.
|
|
|
|
|
|
2018-07-21 13:51:28 +00:00
|
|
|
|
+h(2, "remove_extension") Doc.remove_extension
|
|
|
|
|
+tag classmethod
|
|
|
|
|
+tag-new("2.0.12")
|
|
|
|
|
|
|
|
|
|
p Remove a previously registered extension.
|
|
|
|
|
|
|
|
|
|
+aside-code("Example").
|
|
|
|
|
from spacy.tokens import Doc
|
|
|
|
|
Doc.set_extension('has_city', default=False)
|
|
|
|
|
removed = Doc.remove_extension('has_city')
|
|
|
|
|
assert not Doc.has_extension('has_city')
|
|
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code name]
|
|
|
|
|
+cell unicode
|
|
|
|
|
+cell Name of the extension.
|
|
|
|
|
|
|
|
|
|
+row("foot")
|
|
|
|
|
+cell returns
|
|
|
|
|
+cell tuple
|
|
|
|
|
+cell
|
|
|
|
|
| A #[code.u-break (default, method, getter, setter)] tuple of the
|
|
|
|
|
| removed extension.
|
|
|
|
|
|
2017-08-19 10:45:00 +00:00
|
|
|
|
+h(2, "char_span") Doc.char_span
|
|
|
|
|
+tag method
|
|
|
|
|
+tag-new(2)
|
|
|
|
|
|
2018-02-07 00:08:30 +00:00
|
|
|
|
p
|
|
|
|
|
| Create a #[code Span] object from the slice #[code doc.text[start : end]].
|
|
|
|
|
| Returns #[code None] if the character indices don't map to a valid span.
|
2017-08-19 10:45:00 +00:00
|
|
|
|
|
|
|
|
|
+aside-code("Example").
|
|
|
|
|
doc = nlp(u'I like New York')
|
2017-08-19 14:34:32 +00:00
|
|
|
|
span = doc.char_span(7, 15, label=u'GPE')
|
2017-08-19 10:45:00 +00:00
|
|
|
|
assert span.text == 'New York'
|
|
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code start]
|
|
|
|
|
+cell int
|
|
|
|
|
+cell The index of the first character of the span.
|
|
|
|
|
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code end]
|
|
|
|
|
+cell int
|
2018-07-25 20:17:15 +00:00
|
|
|
|
+cell The index of the last character after the span.
|
2017-08-19 10:45:00 +00:00
|
|
|
|
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code label]
|
2017-08-19 14:34:32 +00:00
|
|
|
|
+cell uint64 / unicode
|
2017-08-19 10:45:00 +00:00
|
|
|
|
+cell A label to attach to the Span, e.g. for named entities.
|
|
|
|
|
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code vector]
|
|
|
|
|
+cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']]
|
|
|
|
|
+cell A meaning representation of the span.
|
|
|
|
|
|
2017-10-03 12:27:22 +00:00
|
|
|
|
+row("foot")
|
2017-08-19 10:45:00 +00:00
|
|
|
|
+cell returns
|
|
|
|
|
+cell #[code Span]
|
2018-02-07 00:08:30 +00:00
|
|
|
|
+cell The newly constructed object or #[code None].
|
2017-08-19 10:45:00 +00:00
|
|
|
|
|
2016-10-31 18:04:15 +00:00
|
|
|
|
+h(2, "similarity") Doc.similarity
|
|
|
|
|
+tag method
|
2017-05-19 18:24:46 +00:00
|
|
|
|
+tag-model("vectors")
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
| Make a semantic similarity estimate. The default estimate is cosine
|
|
|
|
|
| similarity using an average of word vectors.
|
|
|
|
|
|
2017-05-18 20:17:09 +00:00
|
|
|
|
+aside-code("Example").
|
2017-05-19 16:47:39 +00:00
|
|
|
|
apples = nlp(u'I like apples')
|
|
|
|
|
oranges = nlp(u'I like oranges')
|
2017-05-18 20:17:09 +00:00
|
|
|
|
apples_oranges = apples.similarity(oranges)
|
|
|
|
|
oranges_apples = oranges.similarity(apples)
|
|
|
|
|
assert apples_oranges == oranges_apples
|
|
|
|
|
|
2016-10-31 18:04:15 +00:00
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code other]
|
|
|
|
|
+cell -
|
|
|
|
|
+cell
|
2016-11-20 17:02:45 +00:00
|
|
|
|
| The object to compare with. By default, accepts #[code Doc],
|
|
|
|
|
| #[code Span], #[code Token] and #[code Lexeme] objects.
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
2017-10-03 12:27:22 +00:00
|
|
|
|
+row("foot")
|
2017-05-18 22:02:34 +00:00
|
|
|
|
+cell returns
|
2016-10-31 18:04:15 +00:00
|
|
|
|
+cell float
|
|
|
|
|
+cell A scalar similarity score. Higher is more similar.
|
|
|
|
|
|
2017-05-18 20:17:09 +00:00
|
|
|
|
+h(2, "count_by") Doc.count_by
|
|
|
|
|
+tag method
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
| Count the frequencies of a given attribute. Produces a dict of
|
|
|
|
|
| #[code {attr (int): count (ints)}] frequencies, keyed by the values
|
|
|
|
|
| of the given attribute ID.
|
|
|
|
|
|
|
|
|
|
+aside-code("Example").
|
2017-05-19 17:59:02 +00:00
|
|
|
|
from spacy.attrs import ORTH
|
2017-05-18 20:17:09 +00:00
|
|
|
|
doc = nlp(u'apple apple orange banana')
|
2017-05-19 17:59:02 +00:00
|
|
|
|
assert doc.count_by(ORTH) == {7024L: 1, 119552L: 1, 2087L: 2}
|
|
|
|
|
doc.to_array([attrs.ORTH])
|
2017-05-18 20:17:09 +00:00
|
|
|
|
# array([[11880], [11880], [7561], [12800]])
|
|
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code attr_id]
|
|
|
|
|
+cell int
|
|
|
|
|
+cell The attribute ID
|
|
|
|
|
|
2017-10-03 12:27:22 +00:00
|
|
|
|
+row("foot")
|
2017-05-18 22:02:34 +00:00
|
|
|
|
+cell returns
|
2017-05-18 20:17:09 +00:00
|
|
|
|
+cell dict
|
|
|
|
|
+cell A dictionary mapping attributes to integer counts.
|
|
|
|
|
|
2017-10-27 12:37:53 +00:00
|
|
|
|
+h(2, "get_lca_matrix") Doc.get_lca_matrix
|
|
|
|
|
+tag method
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
| Calculates the lowest common ancestor matrix for a given #[code Doc].
|
|
|
|
|
| Returns LCA matrix containing the integer index of the ancestor, or
|
|
|
|
|
| #[code -1] if no common ancestor is found, e.g. if span excludes a
|
|
|
|
|
| necessary ancestor.
|
|
|
|
|
|
|
|
|
|
+aside-code("Example").
|
|
|
|
|
doc = nlp(u"This is a test")
|
|
|
|
|
matrix = doc.get_lca_matrix()
|
|
|
|
|
# array([[0, 1, 1, 1], [1, 1, 1, 1], [1, 1, 2, 3], [1, 1, 3, 3]], dtype=int32)
|
|
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
|
+row("foot")
|
|
|
|
|
+cell returns
|
|
|
|
|
+cell #[code.u-break numpy.ndarray[ndim=2, dtype='int32']]
|
|
|
|
|
+cell The lowest common ancestor matrix of the #[code Doc].
|
|
|
|
|
|
2016-10-31 18:04:15 +00:00
|
|
|
|
+h(2, "to_array") Doc.to_array
|
|
|
|
|
+tag method
|
|
|
|
|
|
|
|
|
|
p
|
2017-10-20 08:55:38 +00:00
|
|
|
|
| Export given token attributes to a numpy #[code ndarray].
|
|
|
|
|
| If #[code attr_ids] is a sequence of #[code M] attributes,
|
|
|
|
|
| the output array will be of shape #[code (N, M)], where #[code N]
|
|
|
|
|
| is the length of the #[code Doc] (in tokens). If #[code attr_ids] is
|
|
|
|
|
| a single attribute, the output shape will be #[code (N,)]. You can
|
|
|
|
|
| specify attributes by integer ID (e.g. #[code spacy.attrs.LEMMA])
|
|
|
|
|
| or string name (e.g. 'LEMMA' or 'lemma'). The values will be 64-bit
|
|
|
|
|
| integers.
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
|
|
|
|
+aside-code("Example").
|
2017-05-18 20:17:09 +00:00
|
|
|
|
from spacy.attrs import LOWER, POS, ENT_TYPE, IS_ALPHA
|
2016-10-31 18:04:15 +00:00
|
|
|
|
doc = nlp(text)
|
|
|
|
|
# All strings mapped to integers, for easy export to numpy
|
2017-05-18 20:17:09 +00:00
|
|
|
|
np_array = doc.to_array([LOWER, POS, ENT_TYPE, IS_ALPHA])
|
2017-10-20 08:55:38 +00:00
|
|
|
|
np_array = doc.to_array("POS")
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code attr_ids]
|
2017-10-20 08:55:38 +00:00
|
|
|
|
+cell list or int or string
|
|
|
|
|
+cell
|
|
|
|
|
| A list of attributes (int IDs or string names) or
|
|
|
|
|
| a single attribute (int ID or string name)
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
2017-10-03 12:27:22 +00:00
|
|
|
|
+row("foot")
|
2017-05-18 22:02:34 +00:00
|
|
|
|
+cell returns
|
2017-10-20 08:55:38 +00:00
|
|
|
|
+cell
|
|
|
|
|
| #[code.u-break numpy.ndarray[ndim=2, dtype='uint64']] or
|
|
|
|
|
| #[code.u-break numpy.ndarray[ndim=1, dtype='uint64']] or
|
2016-10-31 18:04:15 +00:00
|
|
|
|
+cell
|
|
|
|
|
| The exported attributes as a 2D numpy array, with one row per
|
2017-10-20 08:55:38 +00:00
|
|
|
|
| token and one column per attribute (when #[code attr_ids] is a
|
|
|
|
|
| list), or as a 1D numpy array, with one item per attribute (when
|
|
|
|
|
| #[code attr_ids] is a single value).
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
|
|
|
|
+h(2, "from_array") Doc.from_array
|
|
|
|
|
+tag method
|
|
|
|
|
|
2017-05-18 20:17:09 +00:00
|
|
|
|
p
|
|
|
|
|
| Load attributes from a numpy array. Write to a #[code Doc] object, from
|
|
|
|
|
| an #[code (M, N)] array of attributes.
|
|
|
|
|
|
|
|
|
|
+aside-code("Example").
|
|
|
|
|
from spacy.attrs import LOWER, POS, ENT_TYPE, IS_ALPHA
|
|
|
|
|
from spacy.tokens import Doc
|
2018-01-03 15:59:38 +00:00
|
|
|
|
doc = nlp("Hello world!")
|
2017-05-18 20:17:09 +00:00
|
|
|
|
np_array = doc.to_array([LOWER, POS, ENT_TYPE, IS_ALPHA])
|
2018-01-03 15:59:38 +00:00
|
|
|
|
doc2 = Doc(doc.vocab, words=[t.text for t in doc])
|
2017-05-18 20:17:09 +00:00
|
|
|
|
doc2.from_array([LOWER, POS, ENT_TYPE, IS_ALPHA], np_array)
|
2018-01-03 15:59:38 +00:00
|
|
|
|
assert doc[0].pos_ == doc2[0].pos_
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
|
+row
|
2017-05-18 20:17:09 +00:00
|
|
|
|
+cell #[code attrs]
|
2016-10-31 18:04:15 +00:00
|
|
|
|
+cell ints
|
|
|
|
|
+cell A list of attribute ID ints.
|
|
|
|
|
|
|
|
|
|
+row
|
2017-05-18 20:17:09 +00:00
|
|
|
|
+cell #[code array]
|
2017-08-19 10:44:23 +00:00
|
|
|
|
+cell #[code.u-break numpy.ndarray[ndim=2, dtype='int32']]
|
2016-10-31 18:04:15 +00:00
|
|
|
|
+cell The attribute values to load.
|
|
|
|
|
|
2017-10-03 12:27:22 +00:00
|
|
|
|
+row("foot")
|
2017-05-18 22:02:34 +00:00
|
|
|
|
+cell returns
|
2017-05-18 20:17:09 +00:00
|
|
|
|
+cell #[code Doc]
|
|
|
|
|
+cell Itself.
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
2017-05-24 09:58:17 +00:00
|
|
|
|
+h(2, "to_disk") Doc.to_disk
|
|
|
|
|
+tag method
|
2017-05-26 10:42:36 +00:00
|
|
|
|
+tag-new(2)
|
2017-05-24 09:58:17 +00:00
|
|
|
|
|
|
|
|
|
p Save the current state to a directory.
|
|
|
|
|
|
|
|
|
|
+aside-code("Example").
|
|
|
|
|
doc.to_disk('/path/to/doc')
|
|
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code path]
|
|
|
|
|
+cell unicode or #[code Path]
|
|
|
|
|
+cell
|
|
|
|
|
| A path to a directory, which will be created if it doesn't exist.
|
|
|
|
|
| Paths may be either strings or #[code Path]-like objects.
|
|
|
|
|
|
|
|
|
|
+h(2, "from_disk") Doc.from_disk
|
|
|
|
|
+tag method
|
2017-05-26 10:42:36 +00:00
|
|
|
|
+tag-new(2)
|
2017-05-24 09:58:17 +00:00
|
|
|
|
|
|
|
|
|
p Loads state from a directory. Modifies the object in place and returns it.
|
|
|
|
|
|
|
|
|
|
+aside-code("Example").
|
|
|
|
|
from spacy.tokens import Doc
|
2017-05-26 10:43:16 +00:00
|
|
|
|
from spacy.vocab import Vocab
|
|
|
|
|
doc = Doc(Vocab()).from_disk('/path/to/doc')
|
2017-05-24 09:58:17 +00:00
|
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code path]
|
|
|
|
|
+cell unicode or #[code Path]
|
|
|
|
|
+cell
|
|
|
|
|
| A path to a directory. Paths may be either strings or
|
|
|
|
|
| #[code Path]-like objects.
|
|
|
|
|
|
2017-10-03 12:27:22 +00:00
|
|
|
|
+row("foot")
|
2017-05-24 09:58:17 +00:00
|
|
|
|
+cell returns
|
|
|
|
|
+cell #[code Doc]
|
|
|
|
|
+cell The modified #[code Doc] object.
|
|
|
|
|
|
2016-10-31 18:04:15 +00:00
|
|
|
|
+h(2, "to_bytes") Doc.to_bytes
|
|
|
|
|
+tag method
|
|
|
|
|
|
2017-05-18 20:17:09 +00:00
|
|
|
|
p Serialize, i.e. export the document contents to a binary string.
|
|
|
|
|
|
|
|
|
|
+aside-code("Example").
|
|
|
|
|
doc = nlp(u'Give it back! He pleaded.')
|
|
|
|
|
doc_bytes = doc.to_bytes()
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
2017-10-03 12:27:22 +00:00
|
|
|
|
+row("foot")
|
2017-05-18 22:02:34 +00:00
|
|
|
|
+cell returns
|
2016-10-31 18:04:15 +00:00
|
|
|
|
+cell bytes
|
|
|
|
|
+cell
|
2017-05-18 20:17:09 +00:00
|
|
|
|
| A losslessly serialized copy of the #[code Doc], including all
|
2016-10-31 18:04:15 +00:00
|
|
|
|
| annotations.
|
|
|
|
|
|
|
|
|
|
+h(2, "from_bytes") Doc.from_bytes
|
|
|
|
|
+tag method
|
|
|
|
|
|
2017-05-18 20:17:09 +00:00
|
|
|
|
p Deserialize, i.e. import the document contents from a binary string.
|
|
|
|
|
|
|
|
|
|
+aside-code("Example").
|
|
|
|
|
from spacy.tokens import Doc
|
|
|
|
|
text = u'Give it back! He pleaded.'
|
|
|
|
|
doc = nlp(text)
|
|
|
|
|
bytes = doc.to_bytes()
|
|
|
|
|
doc2 = Doc(doc.vocab).from_bytes(bytes)
|
|
|
|
|
assert doc.text == doc2.text
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
|
+row
|
2017-05-18 20:17:09 +00:00
|
|
|
|
+cell #[code data]
|
2016-10-31 18:04:15 +00:00
|
|
|
|
+cell bytes
|
|
|
|
|
+cell The string to load from.
|
|
|
|
|
|
2017-10-03 12:27:22 +00:00
|
|
|
|
+row("foot")
|
2017-05-18 22:02:34 +00:00
|
|
|
|
+cell returns
|
2016-10-31 18:04:15 +00:00
|
|
|
|
+cell #[code Doc]
|
2017-05-21 11:18:39 +00:00
|
|
|
|
+cell The #[code Doc] object.
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
|
|
|
|
+h(2, "merge") Doc.merge
|
|
|
|
|
+tag method
|
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
| Retokenize the document, such that the span at
|
|
|
|
|
| #[code doc.text[start_idx : end_idx]] is merged into a single token. If
|
2017-10-03 12:27:22 +00:00
|
|
|
|
| #[code start_idx] and #[code end_idx] do not mark start and end token
|
2016-10-31 18:04:15 +00:00
|
|
|
|
| boundaries, the document remains unchanged.
|
|
|
|
|
|
2017-05-18 20:17:09 +00:00
|
|
|
|
+aside-code("Example").
|
|
|
|
|
doc = nlp(u'Los Angeles start.')
|
|
|
|
|
doc.merge(0, len('Los Angeles'), 'NNP', 'Los Angeles', 'GPE')
|
2017-05-19 17:59:02 +00:00
|
|
|
|
assert [t.text for t in doc] == [u'Los Angeles', u'start', u'.']
|
2017-05-18 20:17:09 +00:00
|
|
|
|
|
2016-10-31 18:04:15 +00:00
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code start_idx]
|
|
|
|
|
+cell int
|
|
|
|
|
+cell The character index of the start of the slice to merge.
|
|
|
|
|
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code end_idx]
|
|
|
|
|
+cell int
|
|
|
|
|
+cell The character index after the end of the slice to merge.
|
|
|
|
|
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code **attributes]
|
|
|
|
|
+cell -
|
|
|
|
|
+cell
|
|
|
|
|
| Attributes to assign to the merged token. By default,
|
|
|
|
|
| attributes are inherited from the syntactic root token of
|
|
|
|
|
| the span.
|
|
|
|
|
|
2017-10-03 12:27:22 +00:00
|
|
|
|
+row("foot")
|
2017-05-18 22:02:34 +00:00
|
|
|
|
+cell returns
|
2016-10-31 18:04:15 +00:00
|
|
|
|
+cell #[code Token]
|
|
|
|
|
+cell
|
2017-05-18 20:17:09 +00:00
|
|
|
|
| The newly merged token, or #[code None] if the start and end
|
2016-10-31 18:04:15 +00:00
|
|
|
|
| indices did not fall at token boundaries
|
|
|
|
|
|
2017-05-18 20:17:09 +00:00
|
|
|
|
+h(2, "print_tree") Doc.print_tree
|
|
|
|
|
+tag method
|
2017-05-19 18:24:46 +00:00
|
|
|
|
+tag-model("parse")
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
2017-05-18 20:17:09 +00:00
|
|
|
|
p
|
|
|
|
|
| Returns the parse trees in JSON (dict) format. Especially useful for
|
|
|
|
|
| web applications.
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
|
|
|
|
+aside-code("Example").
|
💫 Port master changes over to develop (#2979)
* Create aryaprabhudesai.md (#2681)
* Update _install.jade (#2688)
Typo fix: "models" -> "model"
* Add FAC to spacy.explain (resolves #2706)
* Remove docstrings for deprecated arguments (see #2703)
* When calling getoption() in conftest.py, pass a default option (#2709)
* When calling getoption() in conftest.py, pass a default option
This is necessary to allow testing an installed spacy by running:
pytest --pyargs spacy
* Add contributor agreement
* update bengali token rules for hyphen and digits (#2731)
* Less norm computations in token similarity (#2730)
* Less norm computations in token similarity
* Contributor agreement
* Remove ')' for clarity (#2737)
Sorry, don't mean to be nitpicky, I just noticed this when going through the CLI and thought it was a quick fix. That said, if this was intention than please let me know.
* added contributor agreement for mbkupfer (#2738)
* Basic support for Telugu language (#2751)
* Lex _attrs for polish language (#2750)
* Signed spaCy contributor agreement
* Added polish version of english lex_attrs
* Introduces a bulk merge function, in order to solve issue #653 (#2696)
* Fix comment
* Introduce bulk merge to increase performance on many span merges
* Sign contributor agreement
* Implement pull request suggestions
* Describe converters more explicitly (see #2643)
* Add multi-threading note to Language.pipe (resolves #2582) [ci skip]
* Fix formatting
* Fix dependency scheme docs (closes #2705) [ci skip]
* Don't set stop word in example (closes #2657) [ci skip]
* Add words to portuguese language _num_words (#2759)
* Add words to portuguese language _num_words
* Add words to portuguese language _num_words
* Update Indonesian model (#2752)
* adding e-KTP in tokenizer exceptions list
* add exception token
* removing lines with containing space as it won't matter since we use .split() method in the end, added new tokens in exception
* add tokenizer exceptions list
* combining base_norms with norm_exceptions
* adding norm_exception
* fix double key in lemmatizer
* remove unused import on punctuation.py
* reformat stop_words to reduce number of lines, improve readibility
* updating tokenizer exception
* implement is_currency for lang/id
* adding orth_first_upper in tokenizer_exceptions
* update the norm_exception list
* remove bunch of abbreviations
* adding contributors file
* Fixed spaCy+Keras example (#2763)
* bug fixes in keras example
* created contributor agreement
* Adding French hyphenated first name (#2786)
* Fix typo (closes #2784)
* Fix typo (#2795) [ci skip]
Fixed typo on line 6 "regcognizer --> recognizer"
* Adding basic support for Sinhala language. (#2788)
* adding Sinhala language package, stop words, examples and lex_attrs.
* Adding contributor agreement
* Updating contributor agreement
* Also include lowercase norm exceptions
* Fix error (#2802)
* Fix error
ValueError: cannot resize an array that references or is referenced
by another array in this way. Use the resize function
* added spaCy Contributor Agreement
* Add charlax's contributor agreement (#2805)
* agreement of contributor, may I introduce a tiny pl languge contribution (#2799)
* Contributors agreement
* Contributors agreement
* Contributors agreement
* Add jupyter=True to displacy.render in documentation (#2806)
* Revert "Also include lowercase norm exceptions"
This reverts commit 70f4e8adf37cfcfab60be2b97d6deae949b30e9e.
* Remove deprecated encoding argument to msgpack
* Set up dependency tree pattern matching skeleton (#2732)
* Fix bug when too many entity types. Fixes #2800
* Fix Python 2 test failure
* Require older msgpack-numpy
* Restore encoding arg on msgpack-numpy
* Try to fix version pin for msgpack-numpy
* Update Portuguese Language (#2790)
* Add words to portuguese language _num_words
* Add words to portuguese language _num_words
* Portuguese - Add/remove stopwords, fix tokenizer, add currency symbols
* Extended punctuation and norm_exceptions in the Portuguese language
* Correct error in spacy universe docs concerning spacy-lookup (#2814)
* Update Keras Example for (Parikh et al, 2016) implementation (#2803)
* bug fixes in keras example
* created contributor agreement
* baseline for Parikh model
* initial version of parikh 2016 implemented
* tested asymmetric models
* fixed grevious error in normalization
* use standard SNLI test file
* begin to rework parikh example
* initial version of running example
* start to document the new version
* start to document the new version
* Update Decompositional Attention.ipynb
* fixed calls to similarity
* updated the README
* import sys package duh
* simplified indexing on mapping word to IDs
* stupid python indent error
* added code from https://github.com/tensorflow/tensorflow/issues/3388 for tf bug workaround
* Fix typo (closes #2815) [ci skip]
* Update regex version dependency
* Set version to 2.0.13.dev3
* Skip seemingly problematic test
* Remove problematic test
* Try previous version of regex
* Revert "Remove problematic test"
This reverts commit bdebbef45552d698d390aa430b527ee27830f11b.
* Unskip test
* Try older version of regex
* 💫 Update training examples and use minibatching (#2830)
<!--- Provide a general summary of your changes in the title. -->
## Description
Update the training examples in `/examples/training` to show usage of spaCy's `minibatch` and `compounding` helpers ([see here](https://spacy.io/usage/training#tips-batch-size) for details). The lack of batching in the examples has caused some confusion in the past, especially for beginners who would copy-paste the examples, update them with large training sets and experienced slow and unsatisfying results.
### Types of change
enhancements
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Visual C++ link updated (#2842) (closes #2841) [ci skip]
* New landing page
* Add contribution agreement
* Correcting lang/ru/examples.py (#2845)
* Correct some grammatical inaccuracies in lang\ru\examples.py; filled Contributor Agreement
* Correct some grammatical inaccuracies in lang\ru\examples.py
* Move contributor agreement to separate file
* Set version to 2.0.13.dev4
* Add Persian(Farsi) language support (#2797)
* Also include lowercase norm exceptions
* Remove in favour of https://github.com/explosion/spaCy/graphs/contributors
* Rule-based French Lemmatizer (#2818)
<!--- Provide a general summary of your changes in the title. -->
## Description
<!--- Use this section to describe your changes. If your changes required
testing, include information about the testing environment and the tests you
ran. If your test fixes a bug reported in an issue, don't forget to include the
issue number. If your PR is still a work in progress, that's totally fine – just
include a note to let us know. -->
Add a rule-based French Lemmatizer following the english one and the excellent PR for [greek language optimizations](https://github.com/explosion/spaCy/pull/2558) to adapt the Lemmatizer class.
### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->
- Lemma dictionary used can be found [here](http://infolingu.univ-mlv.fr/DonneesLinguistiques/Dictionnaires/telechargement.html), I used the XML version.
- Add several files containing exhaustive list of words for each part of speech
- Add some lemma rules
- Add POS that are not checked in the standard Lemmatizer, i.e PRON, DET, ADV and AUX
- Modify the Lemmatizer class to check in lookup table as a last resort if POS not mentionned
- Modify the lemmatize function to check in lookup table as a last resort
- Init files are updated so the model can support all the functionalities mentioned above
- Add words to tokenizer_exceptions_list.py in respect to regex used in tokenizer_exceptions.py
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [X] I have submitted the spaCy Contributor Agreement.
- [X] I ran the tests, and all new and existing tests passed.
- [X] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Set version to 2.0.13
* Fix formatting and consistency
* Update docs for new version [ci skip]
* Increment version [ci skip]
* Add info on wheels [ci skip]
* Adding "This is a sentence" example to Sinhala (#2846)
* Add wheels badge
* Update badge [ci skip]
* Update README.rst [ci skip]
* Update murmurhash pin
* Increment version to 2.0.14.dev0
* Update GPU docs for v2.0.14
* Add wheel to setup_requires
* Import prefer_gpu and require_gpu functions from Thinc
* Add tests for prefer_gpu() and require_gpu()
* Update requirements and setup.py
* Workaround bug in thinc require_gpu
* Set version to v2.0.14
* Update push-tag script
* Unhack prefer_gpu
* Require thinc 6.10.6
* Update prefer_gpu and require_gpu docs [ci skip]
* Fix specifiers for GPU
* Set version to 2.0.14.dev1
* Set version to 2.0.14
* Update Thinc version pin
* Increment version
* Fix msgpack-numpy version pin
* Increment version
* Update version to 2.0.16
* Update version [ci skip]
* Redundant ')' in the Stop words' example (#2856)
<!--- Provide a general summary of your changes in the title. -->
## Description
<!--- Use this section to describe your changes. If your changes required
testing, include information about the testing environment and the tests you
ran. If your test fixes a bug reported in an issue, don't forget to include the
issue number. If your PR is still a work in progress, that's totally fine – just
include a note to let us know. -->
### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [ ] I have submitted the spaCy Contributor Agreement.
- [ ] I ran the tests, and all new and existing tests passed.
- [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Documentation improvement regarding joblib and SO (#2867)
Some documentation improvements
## Description
1. Fixed the dead URL to joblib
2. Fixed Stack Overflow brand name (with space)
### Types of change
Documentation
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* raise error when setting overlapping entities as doc.ents (#2880)
* Fix out-of-bounds access in NER training
The helper method state.B(1) gets the index of the first token of the
buffer, or -1 if no such token exists. Normally this is safe because we
pass this to functions like state.safe_get(), which returns an empty
token. Here we used it directly as an array index, which is not okay!
This error may have been the cause of out-of-bounds access errors during
training. Similar errors may still be around, so much be hunted down.
Hunting this one down took a long time...I printed out values across
training runs and diffed, looking for points of divergence between
runs, when no randomness should be allowed.
* Change PyThaiNLP Url (#2876)
* Fix missing comma
* Add example showing a fix-up rule for space entities
* Set version to 2.0.17.dev0
* Update regex version
* Revert "Update regex version"
This reverts commit 62358dd867d15bc6a475942dff34effba69dd70a.
* Try setting older regex version, to align with conda
* Set version to 2.0.17
* Add spacy-js to universe [ci-skip]
* Add spacy-raspberry to universe (closes #2889)
* Add script to validate universe json [ci skip]
* Removed space in docs + added contributor indo (#2909)
* - removed unneeded space in documentation
* - added contributor info
* Allow input text of length up to max_length, inclusive (#2922)
* Include universe spec for spacy-wordnet component (#2919)
* feat: include universe spec for spacy-wordnet component
* chore: include spaCy contributor agreement
* Minor formatting changes [ci skip]
* Fix image [ci skip]
Twitter URL doesn't work on live site
* Check if the word is in one of the regular lists specific to each POS (#2886)
* 💫 Create random IDs for SVGs to prevent ID clashes (#2927)
Resolves #2924.
## Description
Fixes problem where multiple visualizations in Jupyter notebooks would have clashing arc IDs, resulting in weirdly positioned arc labels. Generating a random ID prefix so even identical parses won't receive the same IDs for consistency (even if effect of ID clash isn't noticable here.)
### Types of change
bug fix
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Fix typo [ci skip]
* fixes symbolic link on py3 and windows (#2949)
* fixes symbolic link on py3 and windows
during setup of spacy using command
python -m spacy link en_core_web_sm en
closes #2948
* Update spacy/compat.py
Co-Authored-By: cicorias <cicorias@users.noreply.github.com>
* Fix formatting
* Update universe [ci skip]
* Catalan Language Support (#2940)
* Catalan language Support
* Ddding Catalan to documentation
* Sort languages alphabetically [ci skip]
* Update tests for pytest 4.x (#2965)
<!--- Provide a general summary of your changes in the title. -->
## Description
- [x] Replace marks in params for pytest 4.0 compat ([see here](https://docs.pytest.org/en/latest/deprecations.html#marks-in-pytest-mark-parametrize))
- [x] Un-xfail passing tests (some fixes in a recent update resolved a bunch of issues, but tests were apparently never updated here)
### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Fix regex pin to harmonize with conda (#2964)
* Update README.rst
* Fix bug where Vocab.prune_vector did not use 'batch_size' (#2977)
Fixes #2976
* Fix typo
* Fix typo
* Remove duplicate file
* Require thinc 7.0.0.dev2
Fixes bug in gpu_ops that would use cupy instead of numpy on CPU
* Add missing import
* Fix error IDs
* Fix tests
2018-11-29 15:30:29 +00:00
|
|
|
|
doc = nlp(u'Alice ate the pizza.')
|
2017-05-18 20:17:09 +00:00
|
|
|
|
trees = doc.print_tree()
|
|
|
|
|
# {'modifiers': [
|
|
|
|
|
# {'modifiers': [], 'NE': 'PERSON', 'word': 'Alice', 'arc': 'nsubj', 'POS_coarse': 'PROPN', 'POS_fine': 'NNP', 'lemma': 'Alice'},
|
|
|
|
|
# {'modifiers': [{'modifiers': [], 'NE': '', 'word': 'the', 'arc': 'det', 'POS_coarse': 'DET', 'POS_fine': 'DT', 'lemma': 'the'}], 'NE': '', 'word': 'pizza', 'arc': 'dobj', 'POS_coarse': 'NOUN', 'POS_fine': 'NN', 'lemma': 'pizza'},
|
|
|
|
|
# {'modifiers': [], 'NE': '', 'word': '.', 'arc': 'punct', 'POS_coarse': 'PUNCT', 'POS_fine': '.', 'lemma': '.'}
|
|
|
|
|
# ], 'NE': '', 'word': 'ate', 'arc': 'ROOT', 'POS_coarse': 'VERB', 'POS_fine': 'VBD', 'lemma': 'eat'}
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
|
|
|
|
+row
|
2017-05-18 20:17:09 +00:00
|
|
|
|
+cell #[code light]
|
|
|
|
|
+cell bool
|
|
|
|
|
+cell Don't include lemmas or entities.
|
|
|
|
|
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code flat]
|
|
|
|
|
+cell bool
|
|
|
|
|
+cell Don't include arcs or modifiers.
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
2017-10-03 12:27:22 +00:00
|
|
|
|
+row("foot")
|
2017-05-18 22:02:34 +00:00
|
|
|
|
+cell returns
|
2017-05-18 20:17:09 +00:00
|
|
|
|
+cell dict
|
|
|
|
|
+cell Parse tree as dict.
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
2017-05-18 20:17:09 +00:00
|
|
|
|
+h(2, "ents") Doc.ents
|
2016-10-31 18:04:15 +00:00
|
|
|
|
+tag property
|
2017-05-19 23:38:14 +00:00
|
|
|
|
+tag-model("NER")
|
2017-05-18 20:17:09 +00:00
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
| Iterate over the entities in the document. Yields named-entity
|
|
|
|
|
| #[code Span] objects, if the entity recognizer has been applied to the
|
|
|
|
|
| document.
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
2017-05-18 20:17:09 +00:00
|
|
|
|
+aside-code("Example").
|
💫 Port master changes over to develop (#2979)
* Create aryaprabhudesai.md (#2681)
* Update _install.jade (#2688)
Typo fix: "models" -> "model"
* Add FAC to spacy.explain (resolves #2706)
* Remove docstrings for deprecated arguments (see #2703)
* When calling getoption() in conftest.py, pass a default option (#2709)
* When calling getoption() in conftest.py, pass a default option
This is necessary to allow testing an installed spacy by running:
pytest --pyargs spacy
* Add contributor agreement
* update bengali token rules for hyphen and digits (#2731)
* Less norm computations in token similarity (#2730)
* Less norm computations in token similarity
* Contributor agreement
* Remove ')' for clarity (#2737)
Sorry, don't mean to be nitpicky, I just noticed this when going through the CLI and thought it was a quick fix. That said, if this was intention than please let me know.
* added contributor agreement for mbkupfer (#2738)
* Basic support for Telugu language (#2751)
* Lex _attrs for polish language (#2750)
* Signed spaCy contributor agreement
* Added polish version of english lex_attrs
* Introduces a bulk merge function, in order to solve issue #653 (#2696)
* Fix comment
* Introduce bulk merge to increase performance on many span merges
* Sign contributor agreement
* Implement pull request suggestions
* Describe converters more explicitly (see #2643)
* Add multi-threading note to Language.pipe (resolves #2582) [ci skip]
* Fix formatting
* Fix dependency scheme docs (closes #2705) [ci skip]
* Don't set stop word in example (closes #2657) [ci skip]
* Add words to portuguese language _num_words (#2759)
* Add words to portuguese language _num_words
* Add words to portuguese language _num_words
* Update Indonesian model (#2752)
* adding e-KTP in tokenizer exceptions list
* add exception token
* removing lines with containing space as it won't matter since we use .split() method in the end, added new tokens in exception
* add tokenizer exceptions list
* combining base_norms with norm_exceptions
* adding norm_exception
* fix double key in lemmatizer
* remove unused import on punctuation.py
* reformat stop_words to reduce number of lines, improve readibility
* updating tokenizer exception
* implement is_currency for lang/id
* adding orth_first_upper in tokenizer_exceptions
* update the norm_exception list
* remove bunch of abbreviations
* adding contributors file
* Fixed spaCy+Keras example (#2763)
* bug fixes in keras example
* created contributor agreement
* Adding French hyphenated first name (#2786)
* Fix typo (closes #2784)
* Fix typo (#2795) [ci skip]
Fixed typo on line 6 "regcognizer --> recognizer"
* Adding basic support for Sinhala language. (#2788)
* adding Sinhala language package, stop words, examples and lex_attrs.
* Adding contributor agreement
* Updating contributor agreement
* Also include lowercase norm exceptions
* Fix error (#2802)
* Fix error
ValueError: cannot resize an array that references or is referenced
by another array in this way. Use the resize function
* added spaCy Contributor Agreement
* Add charlax's contributor agreement (#2805)
* agreement of contributor, may I introduce a tiny pl languge contribution (#2799)
* Contributors agreement
* Contributors agreement
* Contributors agreement
* Add jupyter=True to displacy.render in documentation (#2806)
* Revert "Also include lowercase norm exceptions"
This reverts commit 70f4e8adf37cfcfab60be2b97d6deae949b30e9e.
* Remove deprecated encoding argument to msgpack
* Set up dependency tree pattern matching skeleton (#2732)
* Fix bug when too many entity types. Fixes #2800
* Fix Python 2 test failure
* Require older msgpack-numpy
* Restore encoding arg on msgpack-numpy
* Try to fix version pin for msgpack-numpy
* Update Portuguese Language (#2790)
* Add words to portuguese language _num_words
* Add words to portuguese language _num_words
* Portuguese - Add/remove stopwords, fix tokenizer, add currency symbols
* Extended punctuation and norm_exceptions in the Portuguese language
* Correct error in spacy universe docs concerning spacy-lookup (#2814)
* Update Keras Example for (Parikh et al, 2016) implementation (#2803)
* bug fixes in keras example
* created contributor agreement
* baseline for Parikh model
* initial version of parikh 2016 implemented
* tested asymmetric models
* fixed grevious error in normalization
* use standard SNLI test file
* begin to rework parikh example
* initial version of running example
* start to document the new version
* start to document the new version
* Update Decompositional Attention.ipynb
* fixed calls to similarity
* updated the README
* import sys package duh
* simplified indexing on mapping word to IDs
* stupid python indent error
* added code from https://github.com/tensorflow/tensorflow/issues/3388 for tf bug workaround
* Fix typo (closes #2815) [ci skip]
* Update regex version dependency
* Set version to 2.0.13.dev3
* Skip seemingly problematic test
* Remove problematic test
* Try previous version of regex
* Revert "Remove problematic test"
This reverts commit bdebbef45552d698d390aa430b527ee27830f11b.
* Unskip test
* Try older version of regex
* 💫 Update training examples and use minibatching (#2830)
<!--- Provide a general summary of your changes in the title. -->
## Description
Update the training examples in `/examples/training` to show usage of spaCy's `minibatch` and `compounding` helpers ([see here](https://spacy.io/usage/training#tips-batch-size) for details). The lack of batching in the examples has caused some confusion in the past, especially for beginners who would copy-paste the examples, update them with large training sets and experienced slow and unsatisfying results.
### Types of change
enhancements
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Visual C++ link updated (#2842) (closes #2841) [ci skip]
* New landing page
* Add contribution agreement
* Correcting lang/ru/examples.py (#2845)
* Correct some grammatical inaccuracies in lang\ru\examples.py; filled Contributor Agreement
* Correct some grammatical inaccuracies in lang\ru\examples.py
* Move contributor agreement to separate file
* Set version to 2.0.13.dev4
* Add Persian(Farsi) language support (#2797)
* Also include lowercase norm exceptions
* Remove in favour of https://github.com/explosion/spaCy/graphs/contributors
* Rule-based French Lemmatizer (#2818)
<!--- Provide a general summary of your changes in the title. -->
## Description
<!--- Use this section to describe your changes. If your changes required
testing, include information about the testing environment and the tests you
ran. If your test fixes a bug reported in an issue, don't forget to include the
issue number. If your PR is still a work in progress, that's totally fine – just
include a note to let us know. -->
Add a rule-based French Lemmatizer following the english one and the excellent PR for [greek language optimizations](https://github.com/explosion/spaCy/pull/2558) to adapt the Lemmatizer class.
### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->
- Lemma dictionary used can be found [here](http://infolingu.univ-mlv.fr/DonneesLinguistiques/Dictionnaires/telechargement.html), I used the XML version.
- Add several files containing exhaustive list of words for each part of speech
- Add some lemma rules
- Add POS that are not checked in the standard Lemmatizer, i.e PRON, DET, ADV and AUX
- Modify the Lemmatizer class to check in lookup table as a last resort if POS not mentionned
- Modify the lemmatize function to check in lookup table as a last resort
- Init files are updated so the model can support all the functionalities mentioned above
- Add words to tokenizer_exceptions_list.py in respect to regex used in tokenizer_exceptions.py
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [X] I have submitted the spaCy Contributor Agreement.
- [X] I ran the tests, and all new and existing tests passed.
- [X] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Set version to 2.0.13
* Fix formatting and consistency
* Update docs for new version [ci skip]
* Increment version [ci skip]
* Add info on wheels [ci skip]
* Adding "This is a sentence" example to Sinhala (#2846)
* Add wheels badge
* Update badge [ci skip]
* Update README.rst [ci skip]
* Update murmurhash pin
* Increment version to 2.0.14.dev0
* Update GPU docs for v2.0.14
* Add wheel to setup_requires
* Import prefer_gpu and require_gpu functions from Thinc
* Add tests for prefer_gpu() and require_gpu()
* Update requirements and setup.py
* Workaround bug in thinc require_gpu
* Set version to v2.0.14
* Update push-tag script
* Unhack prefer_gpu
* Require thinc 6.10.6
* Update prefer_gpu and require_gpu docs [ci skip]
* Fix specifiers for GPU
* Set version to 2.0.14.dev1
* Set version to 2.0.14
* Update Thinc version pin
* Increment version
* Fix msgpack-numpy version pin
* Increment version
* Update version to 2.0.16
* Update version [ci skip]
* Redundant ')' in the Stop words' example (#2856)
<!--- Provide a general summary of your changes in the title. -->
## Description
<!--- Use this section to describe your changes. If your changes required
testing, include information about the testing environment and the tests you
ran. If your test fixes a bug reported in an issue, don't forget to include the
issue number. If your PR is still a work in progress, that's totally fine – just
include a note to let us know. -->
### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [ ] I have submitted the spaCy Contributor Agreement.
- [ ] I ran the tests, and all new and existing tests passed.
- [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Documentation improvement regarding joblib and SO (#2867)
Some documentation improvements
## Description
1. Fixed the dead URL to joblib
2. Fixed Stack Overflow brand name (with space)
### Types of change
Documentation
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* raise error when setting overlapping entities as doc.ents (#2880)
* Fix out-of-bounds access in NER training
The helper method state.B(1) gets the index of the first token of the
buffer, or -1 if no such token exists. Normally this is safe because we
pass this to functions like state.safe_get(), which returns an empty
token. Here we used it directly as an array index, which is not okay!
This error may have been the cause of out-of-bounds access errors during
training. Similar errors may still be around, so much be hunted down.
Hunting this one down took a long time...I printed out values across
training runs and diffed, looking for points of divergence between
runs, when no randomness should be allowed.
* Change PyThaiNLP Url (#2876)
* Fix missing comma
* Add example showing a fix-up rule for space entities
* Set version to 2.0.17.dev0
* Update regex version
* Revert "Update regex version"
This reverts commit 62358dd867d15bc6a475942dff34effba69dd70a.
* Try setting older regex version, to align with conda
* Set version to 2.0.17
* Add spacy-js to universe [ci-skip]
* Add spacy-raspberry to universe (closes #2889)
* Add script to validate universe json [ci skip]
* Removed space in docs + added contributor indo (#2909)
* - removed unneeded space in documentation
* - added contributor info
* Allow input text of length up to max_length, inclusive (#2922)
* Include universe spec for spacy-wordnet component (#2919)
* feat: include universe spec for spacy-wordnet component
* chore: include spaCy contributor agreement
* Minor formatting changes [ci skip]
* Fix image [ci skip]
Twitter URL doesn't work on live site
* Check if the word is in one of the regular lists specific to each POS (#2886)
* 💫 Create random IDs for SVGs to prevent ID clashes (#2927)
Resolves #2924.
## Description
Fixes problem where multiple visualizations in Jupyter notebooks would have clashing arc IDs, resulting in weirdly positioned arc labels. Generating a random ID prefix so even identical parses won't receive the same IDs for consistency (even if effect of ID clash isn't noticable here.)
### Types of change
bug fix
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Fix typo [ci skip]
* fixes symbolic link on py3 and windows (#2949)
* fixes symbolic link on py3 and windows
during setup of spacy using command
python -m spacy link en_core_web_sm en
closes #2948
* Update spacy/compat.py
Co-Authored-By: cicorias <cicorias@users.noreply.github.com>
* Fix formatting
* Update universe [ci skip]
* Catalan Language Support (#2940)
* Catalan language Support
* Ddding Catalan to documentation
* Sort languages alphabetically [ci skip]
* Update tests for pytest 4.x (#2965)
<!--- Provide a general summary of your changes in the title. -->
## Description
- [x] Replace marks in params for pytest 4.0 compat ([see here](https://docs.pytest.org/en/latest/deprecations.html#marks-in-pytest-mark-parametrize))
- [x] Un-xfail passing tests (some fixes in a recent update resolved a bunch of issues, but tests were apparently never updated here)
### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Fix regex pin to harmonize with conda (#2964)
* Update README.rst
* Fix bug where Vocab.prune_vector did not use 'batch_size' (#2977)
Fixes #2976
* Fix typo
* Fix typo
* Remove duplicate file
* Require thinc 7.0.0.dev2
Fixes bug in gpu_ops that would use cupy instead of numpy on CPU
* Add missing import
* Fix error IDs
* Fix tests
2018-11-29 15:30:29 +00:00
|
|
|
|
doc = nlp(u'Mr. Best flew to New York on Saturday morning.')
|
|
|
|
|
ents = list(doc.ents)
|
2017-05-18 20:17:09 +00:00
|
|
|
|
assert ents[0].label == 346
|
|
|
|
|
assert ents[0].label_ == 'PERSON'
|
|
|
|
|
assert ents[0].text == 'Mr. Best'
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
2017-10-03 12:27:22 +00:00
|
|
|
|
+row("foot")
|
2017-05-18 22:02:34 +00:00
|
|
|
|
+cell yields
|
2016-10-31 18:04:15 +00:00
|
|
|
|
+cell #[code Span]
|
2017-05-18 20:17:09 +00:00
|
|
|
|
+cell Entities in the document.
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
2017-05-18 20:17:09 +00:00
|
|
|
|
+h(2, "noun_chunks") Doc.noun_chunks
|
2016-10-31 18:04:15 +00:00
|
|
|
|
+tag property
|
2017-05-19 18:24:46 +00:00
|
|
|
|
+tag-model("parse")
|
2017-05-18 20:17:09 +00:00
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
| Iterate over the base noun phrases in the document. Yields base
|
|
|
|
|
| noun-phrase #[code Span] objects, if the document has been syntactically
|
|
|
|
|
| parsed. A base noun phrase, or "NP chunk", is a noun phrase that does not
|
|
|
|
|
| permit other NPs to be nested within it – so no NP-level coordination, no
|
|
|
|
|
| prepositional phrases, and no relative clauses.
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
2017-05-18 20:17:09 +00:00
|
|
|
|
+aside-code("Example").
|
|
|
|
|
doc = nlp(u'A phrase with another phrase occurs.')
|
|
|
|
|
chunks = list(doc.noun_chunks)
|
|
|
|
|
assert chunks[0].text == "A phrase"
|
|
|
|
|
assert chunks[1].text == "another phrase"
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
2017-10-03 12:27:22 +00:00
|
|
|
|
+row("foot")
|
2017-05-18 22:02:34 +00:00
|
|
|
|
+cell yields
|
2016-10-31 18:04:15 +00:00
|
|
|
|
+cell #[code Span]
|
2017-05-18 20:17:09 +00:00
|
|
|
|
+cell Noun chunks in the document.
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
2017-05-18 20:17:09 +00:00
|
|
|
|
+h(2, "sents") Doc.sents
|
2016-10-31 18:04:15 +00:00
|
|
|
|
+tag property
|
2017-05-19 18:24:46 +00:00
|
|
|
|
+tag-model("parse")
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
|
|
|
|
p
|
2017-05-18 20:17:09 +00:00
|
|
|
|
| Iterate over the sentences in the document. Sentence spans have no label.
|
|
|
|
|
| To improve accuracy on informal texts, spaCy calculates sentence boundaries
|
|
|
|
|
| from the syntactic dependency parse. If the parser is disabled,
|
|
|
|
|
| the #[code sents] iterator will be unavailable.
|
|
|
|
|
|
|
|
|
|
+aside-code("Example").
|
|
|
|
|
doc = nlp(u"This is a sentence. Here's another...")
|
|
|
|
|
sents = list(doc.sents)
|
|
|
|
|
assert len(sents) == 2
|
|
|
|
|
assert [s.root.text for s in sents] == ["is", "'s"]
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
2017-10-03 12:27:22 +00:00
|
|
|
|
+row("foot")
|
2017-05-18 22:02:34 +00:00
|
|
|
|
+cell yields
|
2016-10-31 18:04:15 +00:00
|
|
|
|
+cell #[code Span]
|
2017-05-18 20:17:09 +00:00
|
|
|
|
+cell Sentences in the document.
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
2017-05-18 20:17:09 +00:00
|
|
|
|
+h(2, "has_vector") Doc.has_vector
|
2016-10-31 18:04:15 +00:00
|
|
|
|
+tag property
|
2017-05-19 18:24:46 +00:00
|
|
|
|
+tag-model("vectors")
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
|
|
|
|
p
|
2017-05-18 20:17:09 +00:00
|
|
|
|
| A boolean value indicating whether a word vector is associated with the
|
|
|
|
|
| object.
|
|
|
|
|
|
|
|
|
|
+aside-code("Example").
|
2017-05-19 16:47:39 +00:00
|
|
|
|
doc = nlp(u'I like apples')
|
|
|
|
|
assert doc.has_vector
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
2017-10-03 12:27:22 +00:00
|
|
|
|
+row("foot")
|
2017-05-18 22:02:34 +00:00
|
|
|
|
+cell returns
|
2017-05-18 20:17:09 +00:00
|
|
|
|
+cell bool
|
|
|
|
|
+cell Whether the document has a vector data attached.
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
2017-05-18 20:17:09 +00:00
|
|
|
|
+h(2, "vector") Doc.vector
|
2016-10-31 18:04:15 +00:00
|
|
|
|
+tag property
|
2017-05-19 18:24:46 +00:00
|
|
|
|
+tag-model("vectors")
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
|
|
|
|
p
|
2017-05-18 20:17:09 +00:00
|
|
|
|
| A real-valued meaning representation. Defaults to an average of the
|
|
|
|
|
| token vectors.
|
|
|
|
|
|
|
|
|
|
+aside-code("Example").
|
2018-03-24 16:12:48 +00:00
|
|
|
|
doc = nlp(u'I like apples')
|
2017-05-19 17:59:02 +00:00
|
|
|
|
assert doc.vector.dtype == 'float32'
|
|
|
|
|
assert doc.vector.shape == (300,)
|
2016-10-31 18:04:15 +00:00
|
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
2017-10-03 12:27:22 +00:00
|
|
|
|
+row("foot")
|
2017-05-18 22:02:34 +00:00
|
|
|
|
+cell returns
|
2017-08-19 10:44:23 +00:00
|
|
|
|
+cell #[code.u-break numpy.ndarray[ndim=1, dtype='float32']]
|
2017-05-18 20:17:09 +00:00
|
|
|
|
+cell A 1D numpy array representing the document's semantics.
|
|
|
|
|
|
2017-05-18 21:59:44 +00:00
|
|
|
|
+h(2, "vector_norm") Doc.vector_norm
|
|
|
|
|
+tag property
|
2017-05-19 18:24:46 +00:00
|
|
|
|
+tag-model("vectors")
|
2017-05-18 21:59:44 +00:00
|
|
|
|
|
|
|
|
|
p
|
|
|
|
|
| The L2 norm of the document's vector representation.
|
2017-05-19 17:59:02 +00:00
|
|
|
|
|
|
|
|
|
+aside-code("Example").
|
|
|
|
|
doc1 = nlp(u'I like apples')
|
|
|
|
|
doc2 = nlp(u'I like oranges')
|
|
|
|
|
doc1.vector_norm # 4.54232424414368
|
|
|
|
|
doc2.vector_norm # 3.304373298575751
|
|
|
|
|
assert doc1.vector_norm != doc2.vector_norm
|
2017-05-18 21:59:44 +00:00
|
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
2017-10-03 12:27:22 +00:00
|
|
|
|
+row("foot")
|
2017-05-18 22:02:34 +00:00
|
|
|
|
+cell returns
|
2017-05-18 21:59:44 +00:00
|
|
|
|
+cell float
|
|
|
|
|
+cell The L2 norm of the vector representation.
|
|
|
|
|
|
2017-05-18 20:17:09 +00:00
|
|
|
|
+h(2, "attributes") Attributes
|
|
|
|
|
|
|
|
|
|
+table(["Name", "Type", "Description"])
|
2017-05-19 16:47:39 +00:00
|
|
|
|
+row
|
|
|
|
|
+cell #[code text]
|
|
|
|
|
+cell unicode
|
|
|
|
|
+cell A unicode representation of the document text.
|
|
|
|
|
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code text_with_ws]
|
|
|
|
|
+cell unicode
|
|
|
|
|
+cell
|
|
|
|
|
| An alias of #[code Doc.text], provided for duck-type compatibility
|
|
|
|
|
| with #[code Span] and #[code Token].
|
|
|
|
|
|
2017-05-18 20:17:09 +00:00
|
|
|
|
+row
|
|
|
|
|
+cell #[code mem]
|
|
|
|
|
+cell #[code Pool]
|
|
|
|
|
+cell The document's local memory heap, for all C data it owns.
|
|
|
|
|
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code vocab]
|
|
|
|
|
+cell #[code Vocab]
|
|
|
|
|
+cell The store of lexical types.
|
|
|
|
|
|
2017-05-18 21:59:44 +00:00
|
|
|
|
+row
|
2017-07-22 15:55:14 +00:00
|
|
|
|
+cell #[code tensor] #[+tag-new(2)]
|
2017-05-18 21:59:44 +00:00
|
|
|
|
+cell object
|
|
|
|
|
+cell Container for dense vector representations.
|
|
|
|
|
|
2017-07-22 15:55:14 +00:00
|
|
|
|
+row
|
|
|
|
|
+cell #[code cats] #[+tag-new(2)]
|
|
|
|
|
+cell dictionary
|
|
|
|
|
+cell
|
|
|
|
|
| Maps either a label to a score for categories applied to whole
|
|
|
|
|
| document, or #[code (start_char, end_char, label)] to score for
|
|
|
|
|
| categories applied to spans. #[code start_char] and #[code end_char]
|
|
|
|
|
| should be character offsets, label can be either a string or an
|
|
|
|
|
| integer ID, and score should be a float.
|
|
|
|
|
|
2017-05-18 20:17:09 +00:00
|
|
|
|
+row
|
|
|
|
|
+cell #[code user_data]
|
|
|
|
|
+cell -
|
|
|
|
|
+cell A generic storage area, for user custom data.
|
|
|
|
|
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code is_tagged]
|
2016-10-31 18:04:15 +00:00
|
|
|
|
+cell bool
|
2017-05-18 20:17:09 +00:00
|
|
|
|
+cell
|
|
|
|
|
| A flag indicating that the document has been part-of-speech
|
|
|
|
|
| tagged.
|
|
|
|
|
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code is_parsed]
|
|
|
|
|
+cell bool
|
|
|
|
|
+cell A flag indicating that the document has been syntactically parsed.
|
|
|
|
|
|
2018-07-21 13:51:11 +00:00
|
|
|
|
+row
|
|
|
|
|
+cell #[code is_sentenced]
|
|
|
|
|
+cell bool
|
|
|
|
|
+cell
|
|
|
|
|
| A flag indicating that sentence boundaries have been applied to
|
|
|
|
|
| the document.
|
|
|
|
|
|
2017-05-18 20:17:09 +00:00
|
|
|
|
+row
|
|
|
|
|
+cell #[code sentiment]
|
|
|
|
|
+cell float
|
|
|
|
|
+cell The document's positivity/negativity score, if available.
|
|
|
|
|
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code user_hooks]
|
|
|
|
|
+cell dict
|
|
|
|
|
+cell
|
|
|
|
|
| A dictionary that allows customisation of the #[code Doc]'s
|
|
|
|
|
| properties.
|
|
|
|
|
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code user_token_hooks]
|
|
|
|
|
+cell dict
|
|
|
|
|
+cell
|
|
|
|
|
| A dictionary that allows customisation of properties of
|
|
|
|
|
| #[code Token] children.
|
|
|
|
|
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code user_span_hooks]
|
|
|
|
|
+cell dict
|
|
|
|
|
+cell
|
|
|
|
|
| A dictionary that allows customisation of properties of
|
|
|
|
|
| #[code Span] children.
|
2017-10-27 15:07:26 +00:00
|
|
|
|
|
|
|
|
|
+row
|
|
|
|
|
+cell #[code _]
|
|
|
|
|
+cell #[code Underscore]
|
|
|
|
|
+cell
|
|
|
|
|
| User space for adding custom
|
|
|
|
|
| #[+a("/usage/processing-pipelines#custom-components-attributes") attribute extensions].
|