spaCy/spacy/syntax/iterators.pyx

85 lines
3.2 KiB
Cython
Raw Normal View History

from spacy.structs cimport TokenC
from spacy.tokens.span cimport Span
from spacy.tokens.doc cimport Doc
from spacy.tokens.token cimport Token
from spacy.parts_of_speech cimport NOUN
2016-04-08 14:45:27 +00:00
CHUNKERS = {'en':EnglishNounChunks, 'de':GermanNounChunks}
# base class for document iterators
cdef class DocIterator:
def __init__(self, Doc doc):
self._doc = doc
def __iter__(self):
return self
def __next__(self):
raise NotImplementedError
cdef class EnglishNounChunks(DocIterator):
def __init__(self, Doc doc):
super(EnglishNounChunks,self).__init__(doc)
labels = ['nsubj', 'dobj', 'nsubjpass', 'pcomp', 'pobj', 'attr', 'root']
self._np_label = self._doc.vocab.strings['NP']
self._np_deps = set( self._doc.vocab.strings[label] for label in labels )
self._conjunct = self._doc.vocab.strings['conj']
self.i = 0
def __next__(self):
cdef const TokenC* word
cdef widx
while self.i < self._doc.length:
widx = self.i
self.i += 1
word = &self._doc.c[widx]
if word.pos == NOUN:
if word.dep in self._np_deps:
return Span(self._doc, word.l_edge, widx+1, label=self._np_label)
elif word.dep == self._conjunct:
head = word+word.head
while head.dep == self._conjunct and head.head < 0:
head += head.head
# If the head is an NP, and we're coordinated to it, we're an NP
if head.dep in self._np_deps:
return Span(self._doc, word.l_edge, widx+1, label=self._np_label)
raise StopIteration
# this iterator extracts spans headed by NOUNs starting from the left-most
# syntactic dependent until the NOUN itself
# for close apposition and measurement construction, the span is sometimes
# extended to the right of the NOUN
# example: "eine Tasse Tee" (a cup (of) tea) returns "eine Tasse Tee" and not
# just "eine Tasse", same for "das Thema Familie"
cdef class GermanNounChunks(DocIterator):
def __init__(self, Doc doc):
super(GermanNounChunks,self).__init__(doc)
labels = ['sb', 'oa', 'da', 'nk', 'mo', 'ag', 'root', 'cj', 'pd', 'og', 'app']
self._np_label = self._doc.vocab.strings['NP']
self._np_deps = set( self._doc.vocab.strings[label] for label in labels )
self._close_app = self._doc.vocab.strings['nk']
self.i = 0
def __next__(self):
cdef const TokenC* word
cdef int rbracket
cdef Token rdep
cdef widx
while self.i < self._doc.length:
widx = self.i
self.i += 1
word = &self._doc.c[widx]
if word.pos == NOUN and word.dep in self._np_deps:
rbracket = widx+1
# try to extend the span to the right
# to capture close apposition/measurement constructions
for rdep in self._doc[widx].rights:
if rdep.pos == NOUN and rdep.dep == self._close_app:
rbracket = rdep.i+1
return Span(self._doc, word.l_edge, rbracket, label=self._np_label)
raise StopIteration