2019-09-14 14:41:48 +00:00
|
|
|
|
---
|
|
|
|
|
title: What's New in v2.2
|
|
|
|
|
teaser: New features, backwards incompatibilities and migration guide
|
|
|
|
|
menu:
|
|
|
|
|
- ['New Features', 'features']
|
|
|
|
|
- ['Backwards Incompatibilities', 'incompat']
|
|
|
|
|
---
|
|
|
|
|
|
|
|
|
|
## New Features {#features hidden="true"}
|
|
|
|
|
|
|
|
|
|
<!-- TODO: summary -->
|
|
|
|
|
|
|
|
|
|
### Better pretrained models and more languages {#models}
|
|
|
|
|
|
|
|
|
|
> #### Example
|
|
|
|
|
>
|
|
|
|
|
> ```python
|
|
|
|
|
> python -m spacy download nl_core_news_sm
|
|
|
|
|
> python -m spacy download nb_core_news_sm
|
|
|
|
|
> python -m spacy download nb_core_news_md
|
|
|
|
|
> python -m spacy download lt_core_news_sm
|
|
|
|
|
> ```
|
|
|
|
|
|
|
|
|
|
The new version also features new and re-trained models for all languages and
|
|
|
|
|
resolves a number of data bugs. The [Dutch model](/models/nl) has been retrained
|
|
|
|
|
with a new and custom-labelled NER corpus using the same extended label scheme
|
|
|
|
|
as the English models. It should now produce significantly better NER results
|
|
|
|
|
overall. We've also added new core models for [Norwegian](/models/nb) (MIT) and
|
|
|
|
|
[Lithuanian](/models/lt) (CC BY-SA).
|
|
|
|
|
|
|
|
|
|
<Infobox>
|
|
|
|
|
|
|
|
|
|
**Usage:** [Models directory](/models) **Benchmarks: **
|
|
|
|
|
[Release notes](https://github.com/explosion/spaCy/releases/tag/v2.2.0)
|
|
|
|
|
|
|
|
|
|
</Infobox>
|
|
|
|
|
|
|
|
|
|
### Entity linking API {#entity-linking}
|
|
|
|
|
|
|
|
|
|
> #### Example
|
|
|
|
|
>
|
|
|
|
|
> ```python
|
|
|
|
|
> nlp = spacy.load("my_custom_wikidata_model")
|
|
|
|
|
> doc = nlp("Ada Lovelace was born in London")
|
|
|
|
|
> print([(e.text, e.label_, e.kb_id_) for e in doc.ents])
|
|
|
|
|
> # [('Ada Lovelace', 'PERSON', 'Q7259'), ('London', 'GPE', 'Q84')]
|
|
|
|
|
> ```
|
|
|
|
|
|
|
|
|
|
Entity linking lets you ground named entities into the "real world". We're
|
|
|
|
|
excited to now provide a built-in API for training entity linking models and
|
|
|
|
|
resolving textual entities to unique identifiers from a knowledge base. The
|
|
|
|
|
annotated KB identifier is accessible as either a hash value or as a string from
|
|
|
|
|
a `Span` or `Token` object. For more details on entity linking in spaCy, check
|
|
|
|
|
out
|
|
|
|
|
[Sofie's talk](https://www.youtube.com/watch?v=PW3RJM8tDGo&list=PLBmcuObd5An4UC6jvK_-eSl6jCvP1gwXc&index=6)
|
|
|
|
|
at spaCy IRL 2019.
|
|
|
|
|
|
|
|
|
|
<Infobox>
|
|
|
|
|
|
|
|
|
|
**API:** [`EntityLinker`](/api/entitylinker),
|
|
|
|
|
[`KnowledgeBase`](/api/knowledgebase) **Code: **
|
|
|
|
|
[`bin/wiki_entity_linking`](https://github.com/explosion/spaCy/tree/master/bin/wiki_entity_linking)
|
|
|
|
|
**Usage: ** [Entity linking](/usage/linguistic-features#entity-linking),
|
|
|
|
|
[Training an entity linking model](/usage/training#entity-linker)
|
|
|
|
|
|
|
|
|
|
</Infobox>
|
|
|
|
|
|
|
|
|
|
### Serializable lookup table and dictionary API {#lookups}
|
|
|
|
|
|
|
|
|
|
> #### Example
|
|
|
|
|
>
|
|
|
|
|
> ```python
|
|
|
|
|
> data = {"foo": "bar"}
|
|
|
|
|
> nlp.vocab.lookups.add_table("my_dict", data)
|
|
|
|
|
>
|
|
|
|
|
> def custom_component(doc):
|
|
|
|
|
> table = doc.vocab.lookups.get_table("my_dict")
|
|
|
|
|
> print(table.get("foo")) # look something up
|
|
|
|
|
> return doc
|
|
|
|
|
> ```
|
|
|
|
|
|
|
|
|
|
The new `Lookups` API lets you add large dictionaries and lookup tables to the
|
|
|
|
|
`Vocab` and access them from the tokenizer or custom components and extension
|
|
|
|
|
attributes. Internally, the tables use Bloom filters for efficient lookup
|
|
|
|
|
checks. They're also fully serializable out-of-the-box. All large data resources
|
|
|
|
|
included with spaCy now use this API and are additionally compressed at build
|
|
|
|
|
time. This allowed us to make the installed library roughly **15 times smaller
|
|
|
|
|
on disk**.
|
|
|
|
|
|
|
|
|
|
<Infobox>
|
|
|
|
|
|
|
|
|
|
**API:** [`Lookups`](/api/lookups) **Usage: **
|
|
|
|
|
[Adding languages: Lemmatizer](/usage/adding-languages#lemmatizer)
|
|
|
|
|
|
|
|
|
|
</Infobox>
|
|
|
|
|
|
|
|
|
|
### Text classification scores and CLI training {#train-textcat-cli}
|
|
|
|
|
|
|
|
|
|
> #### Example
|
|
|
|
|
>
|
2019-09-18 12:07:55 +00:00
|
|
|
|
> ```bash
|
|
|
|
|
> spacy train en /path/to/output /path/to/train /path/to/dev \
|
|
|
|
|
> --pipeline textcat \
|
|
|
|
|
> --textcat-arch simple_cnn --textcat-multilabel
|
2019-09-14 14:41:48 +00:00
|
|
|
|
> ```
|
|
|
|
|
|
|
|
|
|
When training your models using the `spacy train` command, you can now also
|
|
|
|
|
include text categories in the JSON-formatted training data. The `Scorer` and
|
|
|
|
|
`nlp.evaluate` now report the text classification scores, calculated as the
|
|
|
|
|
F-score on positive label for binary exclusive tasks, the macro-averaged F-score
|
|
|
|
|
for 3+ exclusive labels or the macro-averaged AUC ROC score for multilabel
|
|
|
|
|
classification.
|
|
|
|
|
|
|
|
|
|
<Infobox>
|
|
|
|
|
|
|
|
|
|
**API:** [`spacy train`](/api/cli#train), [`Scorer`](/api/scorer),
|
|
|
|
|
[`Language.evaluate`](/api/language#evaluate)
|
|
|
|
|
|
|
|
|
|
</Infobox>
|
|
|
|
|
|
2019-09-18 12:07:55 +00:00
|
|
|
|
### New DocPallet class to efficiently Doc collections
|
|
|
|
|
|
|
|
|
|
> #### Example
|
|
|
|
|
>
|
|
|
|
|
> ```python
|
|
|
|
|
> from spacy.tokens import DocPallet
|
|
|
|
|
> pallet = DocPallet(attrs=["LEMMA", "ENT_IOB", "ENT_TYPE"], store_user_data=False)
|
|
|
|
|
> for doc in nlp.pipe(texts):
|
|
|
|
|
> pallet.add(doc)
|
|
|
|
|
> byte_data = pallet.to_bytes()
|
|
|
|
|
> # Deserialize later, e.g. in a new process
|
|
|
|
|
> nlp = spacy.blank("en")
|
|
|
|
|
> pallet = DocPallet()
|
|
|
|
|
> docs = list(pallet.get_docs(nlp.vocab))
|
|
|
|
|
> ```
|
|
|
|
|
|
|
|
|
|
If you're working with lots of data, you'll probably need to pass analyses
|
|
|
|
|
between machines, either to use something like Dask or Spark, or even just to
|
|
|
|
|
save out work to disk. Often it's sufficient to use the doc.to_array()
|
|
|
|
|
functionality for this, and just serialize the numpy arrays --- but other times
|
|
|
|
|
you want a more general way to save and restore `Doc` objects.
|
|
|
|
|
|
|
|
|
|
The new `DocPallet` class makes it easy to serialize and deserialize
|
|
|
|
|
a collection of `Doc` objects together, and is much more efficient than
|
|
|
|
|
calling `doc.to_bytes()` on each individual `Doc` object. You can also control
|
|
|
|
|
what data gets saved, and you can merge pallets together for easy
|
|
|
|
|
map/reduce-style processing.
|
|
|
|
|
|
2019-09-14 14:41:48 +00:00
|
|
|
|
### CLI command to debug and validate training data {#debug-data}
|
|
|
|
|
|
|
|
|
|
> #### Example
|
|
|
|
|
>
|
|
|
|
|
> ```bash
|
|
|
|
|
> $ python -m spacy debug-data en train.json dev.json
|
|
|
|
|
> ```
|
|
|
|
|
|
|
|
|
|
The new `debug-data` command lets you analyze and validate your training and
|
|
|
|
|
development data, get useful stats, and find problems like invalid entity
|
|
|
|
|
annotations, cyclic dependencies, low data labels and more. If you're training a
|
|
|
|
|
model with `spacy train` and the results seem surprising or confusing,
|
|
|
|
|
`debug-data` may help you track down the problems and improve your training
|
|
|
|
|
data.
|
|
|
|
|
|
|
|
|
|
<Accordion title="Example output">
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
=========================== Data format validation ===========================
|
|
|
|
|
✔ Corpus is loadable
|
|
|
|
|
|
|
|
|
|
=============================== Training stats ===============================
|
|
|
|
|
Training pipeline: tagger, parser, ner
|
|
|
|
|
Starting with blank model 'en'
|
|
|
|
|
18127 training docs
|
|
|
|
|
2939 evaluation docs
|
|
|
|
|
⚠ 34 training examples also in evaluation data
|
|
|
|
|
|
|
|
|
|
============================== Vocab & Vectors ==============================
|
|
|
|
|
ℹ 2083156 total words in the data (56962 unique)
|
|
|
|
|
⚠ 13020 misaligned tokens in the training data
|
|
|
|
|
⚠ 2423 misaligned tokens in the dev data
|
|
|
|
|
10 most common words: 'the' (98429), ',' (91756), '.' (87073), 'to' (50058),
|
|
|
|
|
'of' (49559), 'and' (44416), 'a' (34010), 'in' (31424), 'that' (22792), 'is'
|
|
|
|
|
(18952)
|
|
|
|
|
ℹ No word vectors present in the model
|
|
|
|
|
|
|
|
|
|
========================== Named Entity Recognition ==========================
|
|
|
|
|
ℹ 18 new labels, 0 existing labels
|
|
|
|
|
528978 missing values (tokens with '-' label)
|
|
|
|
|
New: 'ORG' (23860), 'PERSON' (21395), 'GPE' (21193), 'DATE' (18080), 'CARDINAL'
|
|
|
|
|
(10490), 'NORP' (9033), 'MONEY' (5164), 'PERCENT' (3761), 'ORDINAL' (2122),
|
|
|
|
|
'LOC' (2113), 'TIME' (1616), 'WORK_OF_ART' (1229), 'QUANTITY' (1150), 'FAC'
|
|
|
|
|
(1134), 'EVENT' (974), 'PRODUCT' (935), 'LAW' (444), 'LANGUAGE' (338)
|
|
|
|
|
✔ Good amount of examples for all labels
|
|
|
|
|
✔ Examples without occurences available for all labels
|
|
|
|
|
✔ No entities consisting of or starting/ending with whitespace
|
|
|
|
|
|
|
|
|
|
=========================== Part-of-speech Tagging ===========================
|
|
|
|
|
ℹ 49 labels in data (57 labels in tag map)
|
|
|
|
|
'NN' (266331), 'IN' (227365), 'DT' (185600), 'NNP' (164404), 'JJ' (119830),
|
|
|
|
|
'NNS' (110957), '.' (101482), ',' (92476), 'RB' (90090), 'PRP' (90081), 'VB'
|
|
|
|
|
(74538), 'VBD' (68199), 'CC' (62862), 'VBZ' (50712), 'VBP' (43420), 'VBN'
|
|
|
|
|
(42193), 'CD' (40326), 'VBG' (34764), 'TO' (31085), 'MD' (25863), 'PRP$'
|
|
|
|
|
(23335), 'HYPH' (13833), 'POS' (13427), 'UH' (13322), 'WP' (10423), 'WDT'
|
|
|
|
|
(9850), 'RP' (8230), 'WRB' (8201), ':' (8168), '''' (7392), '``' (6984), 'NNPS'
|
|
|
|
|
(5817), 'JJR' (5689), '$' (3710), 'EX' (3465), 'JJS' (3118), 'RBR' (2872),
|
|
|
|
|
'-RRB-' (2825), '-LRB-' (2788), 'PDT' (2078), 'XX' (1316), 'RBS' (1142), 'FW'
|
|
|
|
|
(794), 'NFP' (557), 'SYM' (440), 'WP$' (294), 'LS' (293), 'ADD' (191), 'AFX'
|
|
|
|
|
(24)
|
|
|
|
|
✔ All labels present in tag map for language 'en'
|
|
|
|
|
|
|
|
|
|
============================= Dependency Parsing =============================
|
|
|
|
|
ℹ Found 111703 sentences with an average length of 18.6 words.
|
|
|
|
|
ℹ Found 2251 nonprojective train sentences
|
|
|
|
|
ℹ Found 303 nonprojective dev sentences
|
|
|
|
|
ℹ 47 labels in train data
|
|
|
|
|
ℹ 211 labels in projectivized train data
|
|
|
|
|
'punct' (236796), 'prep' (188853), 'pobj' (182533), 'det' (172674), 'nsubj'
|
|
|
|
|
(169481), 'compound' (116142), 'ROOT' (111697), 'amod' (107945), 'dobj' (93540),
|
|
|
|
|
'aux' (86802), 'advmod' (86197), 'cc' (62679), 'conj' (59575), 'poss' (36449),
|
|
|
|
|
'ccomp' (36343), 'advcl' (29017), 'mark' (27990), 'nummod' (24582), 'relcl'
|
|
|
|
|
(21359), 'xcomp' (21081), 'attr' (18347), 'npadvmod' (17740), 'acomp' (17204),
|
|
|
|
|
'auxpass' (15639), 'appos' (15368), 'neg' (15266), 'nsubjpass' (13922), 'case'
|
|
|
|
|
(13408), 'acl' (12574), 'pcomp' (10340), 'nmod' (9736), 'intj' (9285), 'prt'
|
|
|
|
|
(8196), 'quantmod' (7403), 'dep' (4300), 'dative' (4091), 'agent' (3908), 'expl'
|
|
|
|
|
(3456), 'parataxis' (3099), 'oprd' (2326), 'predet' (1946), 'csubj' (1494),
|
|
|
|
|
'subtok' (1147), 'preconj' (692), 'meta' (469), 'csubjpass' (64), 'iobj' (1)
|
|
|
|
|
⚠ Low number of examples for label 'iobj' (1)
|
|
|
|
|
⚠ Low number of examples for 130 labels in the projectivized dependency
|
|
|
|
|
trees used for training. You may want to projectivize labels such as punct
|
|
|
|
|
before training in order to improve parser performance.
|
|
|
|
|
⚠ Projectivized labels with low numbers of examples: appos||attr: 12
|
|
|
|
|
advmod||dobj: 13 prep||ccomp: 12 nsubjpass||ccomp: 15 pcomp||prep: 14
|
|
|
|
|
amod||dobj: 9 attr||xcomp: 14 nmod||nsubj: 17 prep||advcl: 2 prep||prep: 5
|
|
|
|
|
nsubj||conj: 12 advcl||advmod: 18 ccomp||advmod: 11 ccomp||pcomp: 5 acl||pobj:
|
|
|
|
|
10 npadvmod||acomp: 7 dobj||pcomp: 14 nsubjpass||pcomp: 1 nmod||pobj: 8
|
|
|
|
|
amod||attr: 6 nmod||dobj: 12 aux||conj: 1 neg||conj: 1 dative||xcomp: 11
|
|
|
|
|
pobj||dative: 3 xcomp||acomp: 19 advcl||pobj: 2 nsubj||advcl: 2 csubj||ccomp: 1
|
|
|
|
|
advcl||acl: 1 relcl||nmod: 2 dobj||advcl: 10 advmod||advcl: 3 nmod||nsubjpass: 6
|
|
|
|
|
amod||pobj: 5 cc||neg: 1 attr||ccomp: 16 advcl||xcomp: 3 nmod||attr: 4
|
|
|
|
|
advcl||nsubjpass: 5 advcl||ccomp: 4 ccomp||conj: 1 punct||acl: 1 meta||acl: 1
|
|
|
|
|
parataxis||acl: 1 prep||acl: 1 amod||nsubj: 7 ccomp||ccomp: 3 acomp||xcomp: 5
|
|
|
|
|
dobj||acl: 5 prep||oprd: 6 advmod||acl: 2 dative||advcl: 1 pobj||agent: 5
|
|
|
|
|
xcomp||amod: 1 dep||advcl: 1 prep||amod: 8 relcl||compound: 1 advcl||csubj: 3
|
|
|
|
|
npadvmod||conj: 2 npadvmod||xcomp: 4 advmod||nsubj: 3 ccomp||amod: 7
|
|
|
|
|
advcl||conj: 1 nmod||conj: 2 advmod||nsubjpass: 2 dep||xcomp: 2 appos||ccomp: 1
|
|
|
|
|
advmod||dep: 1 advmod||advmod: 5 aux||xcomp: 8 dep||advmod: 1 dative||ccomp: 2
|
|
|
|
|
prep||dep: 1 conj||conj: 1 dep||ccomp: 4 cc||ROOT: 1 prep||ROOT: 1 nsubj||pcomp:
|
|
|
|
|
3 advmod||prep: 2 relcl||dative: 1 acl||conj: 1 advcl||attr: 4 prep||npadvmod: 1
|
|
|
|
|
nsubjpass||xcomp: 1 neg||advmod: 1 xcomp||oprd: 1 advcl||advcl: 1 dobj||dep: 3
|
|
|
|
|
nsubjpass||parataxis: 1 attr||pcomp: 1 ccomp||parataxis: 1 advmod||attr: 1
|
|
|
|
|
nmod||oprd: 1 appos||nmod: 2 advmod||relcl: 1 appos||npadvmod: 1 appos||conj: 1
|
|
|
|
|
prep||expl: 1 nsubjpass||conj: 1 punct||pobj: 1 cc||pobj: 1 conj||pobj: 1
|
|
|
|
|
punct||conj: 1 ccomp||dep: 1 oprd||xcomp: 3 ccomp||xcomp: 1 ccomp||nsubj: 1
|
|
|
|
|
nmod||dep: 1 xcomp||ccomp: 1 acomp||advcl: 1 intj||advmod: 1 advmod||acomp: 2
|
|
|
|
|
relcl||oprd: 1 advmod||prt: 1 advmod||pobj: 1 appos||nummod: 1 relcl||npadvmod:
|
|
|
|
|
3 mark||advcl: 1 aux||ccomp: 1 amod||nsubjpass: 1 npadvmod||advmod: 1 conj||dep:
|
|
|
|
|
1 nummod||pobj: 1 amod||npadvmod: 1 intj||pobj: 1 nummod||npadvmod: 1
|
|
|
|
|
xcomp||xcomp: 1 aux||dep: 1 advcl||relcl: 1
|
|
|
|
|
⚠ The following labels were found only in the train data: xcomp||amod,
|
|
|
|
|
advcl||relcl, prep||nsubjpass, acl||nsubj, nsubjpass||conj, xcomp||oprd,
|
|
|
|
|
advmod||conj, advmod||advmod, iobj, advmod||nsubjpass, dobj||conj, ccomp||amod,
|
|
|
|
|
meta||acl, xcomp||xcomp, prep||attr, prep||ccomp, advcl||acomp, acl||dobj,
|
|
|
|
|
advcl||advcl, pobj||agent, prep||advcl, nsubjpass||xcomp, prep||dep,
|
|
|
|
|
acomp||xcomp, aux||ccomp, ccomp||dep, conj||dep, relcl||compound,
|
|
|
|
|
nsubjpass||ccomp, nmod||dobj, advmod||advcl, advmod||acl, dobj||advcl,
|
|
|
|
|
dative||xcomp, prep||nsubj, ccomp||ccomp, nsubj||ccomp, xcomp||acomp,
|
|
|
|
|
prep||acomp, dep||advmod, acl||pobj, appos||dobj, npadvmod||acomp, cc||ROOT,
|
|
|
|
|
relcl||nsubj, nmod||pobj, acl||nsubjpass, ccomp||advmod, pcomp||prep,
|
|
|
|
|
amod||dobj, advmod||attr, advcl||csubj, appos||attr, dobj||pcomp, prep||ROOT,
|
|
|
|
|
relcl||pobj, advmod||pobj, amod||nsubj, ccomp||xcomp, prep||oprd,
|
|
|
|
|
npadvmod||advmod, appos||nummod, advcl||pobj, neg||advmod, acl||attr,
|
|
|
|
|
appos||nsubjpass, csubj||ccomp, amod||nsubjpass, intj||pobj, dep||advcl,
|
|
|
|
|
cc||neg, xcomp||ccomp, dative||ccomp, nmod||oprd, pobj||dative, prep||dobj,
|
|
|
|
|
dep||ccomp, relcl||attr, ccomp||nsubj, advcl||xcomp, nmod||dep, advcl||advmod,
|
|
|
|
|
ccomp||conj, pobj||prep, advmod||acomp, advmod||relcl, attr||pcomp,
|
|
|
|
|
ccomp||parataxis, oprd||xcomp, intj||advmod, nmod||nsubjpass, prep||npadvmod,
|
|
|
|
|
parataxis||acl, prep||pobj, advcl||dobj, amod||pobj, prep||acl, conj||pobj,
|
|
|
|
|
advmod||dep, punct||pobj, ccomp||acomp, acomp||advcl, nummod||npadvmod,
|
|
|
|
|
dobj||dep, npadvmod||xcomp, advcl||conj, relcl||npadvmod, punct||acl,
|
|
|
|
|
relcl||dobj, dobj||xcomp, nsubjpass||parataxis, dative||advcl, relcl||nmod,
|
|
|
|
|
advcl||ccomp, appos||npadvmod, ccomp||pcomp, prep||amod, mark||advcl,
|
|
|
|
|
prep||advmod, prep||xcomp, appos||nsubj, attr||ccomp, advmod||prt, dobj||ccomp,
|
|
|
|
|
aux||conj, advcl||nsubj, conj||conj, advmod||ccomp, advcl||nsubjpass,
|
|
|
|
|
attr||xcomp, nmod||conj, npadvmod||conj, relcl||dative, prep||expl,
|
|
|
|
|
nsubjpass||pcomp, advmod||xcomp, advmod||dobj, appos||pobj, nsubj||conj,
|
|
|
|
|
relcl||nsubjpass, advcl||attr, appos||ccomp, advmod||prep, prep||conj,
|
|
|
|
|
nmod||attr, punct||conj, neg||conj, dep||xcomp, aux||xcomp, dobj||acl,
|
|
|
|
|
nummod||pobj, amod||npadvmod, nsubj||pcomp, advcl||acl, appos||nmod,
|
|
|
|
|
relcl||oprd, prep||prep, cc||pobj, nmod||nsubj, amod||attr, aux||dep,
|
|
|
|
|
appos||conj, advmod||nsubj, nsubj||advcl, acl||conj
|
|
|
|
|
To train a parser, your data should include at least 20 instances of each label.
|
|
|
|
|
⚠ Multiple root labels (ROOT, nsubj, aux, npadvmod, prep) found in
|
|
|
|
|
training data. spaCy's parser uses a single root label ROOT so this distinction
|
|
|
|
|
will not be available.
|
|
|
|
|
|
|
|
|
|
================================== Summary ==================================
|
|
|
|
|
✔ 5 checks passed
|
|
|
|
|
⚠ 8 warnings
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
</Accordion>
|
|
|
|
|
|
|
|
|
|
<Infobox>
|
|
|
|
|
|
|
|
|
|
**API:** [`spacy debug-data`](/api/cli#debug-data)
|
|
|
|
|
|
|
|
|
|
</Infobox>
|
|
|
|
|
|
|
|
|
|
## Backwards incompatibilities {#incompat}
|
|
|
|
|
|
|
|
|
|
<Infobox title="Important note on models" variant="warning">
|
|
|
|
|
|
|
|
|
|
If you've been training **your own models**, you'll need to **retrain** them
|
|
|
|
|
with the new version. Also don't forget to upgrade all models to the latest
|
|
|
|
|
versions. Models for v2.0 or v2.1 aren't compatible with models for v2.2. To
|
|
|
|
|
check if all of your models are up to date, you can run the
|
|
|
|
|
[`spacy validate`](/api/cli#validate) command.
|
|
|
|
|
|
|
|
|
|
</Infobox>
|
|
|
|
|
|
|
|
|
|
<!-- TODO: copy from release notes once they're ready -->
|