spaCy/spacy/language.py

196 lines
6.2 KiB
Python
Raw Normal View History

2015-08-25 13:37:17 +00:00
class Language(object):
@staticmethod
def lower(string):
return string.lower()
@staticmethod
def norm(string):
return string
@staticmethod
def shape(string):
return orth.word_shape(string)
@staticmethod
def prefix(string):
return string[0]
@staticmethod
def suffix(string):
return string[-3:]
@staticmethod
def prob(string):
return self.oov_prob
@staticmethod
def cluster(string):
return 0
@staticmethod
def is_alpha(string):
return orths.is_alpha(string)
@staticmethod
def is_lower(string):
return orths.is_lower(string)
@staticmethod
def is_upper(string):
return orths.is_upper(string)
@staticmethod
def like_url(string):
return orths.like_url(string)
@staticmethod
def like_number(string):
return orths.like_number(string)
@staticmethod
def like_email(string):
return orths.like_email(string)
def default_lex_attrs(cls, data_dir):
return {
attrs.LOWER: cls.lower,
attrs.NORM: cls.norm,
attrs.SHAPE: cls.shape,
attrs.PREFIX: cls.prefix,
attrs.SUFFIX: cls.suffix,
attrs.CLUSTER: cls.cluster,
attrs.PROB: cls.prob,
attrs.IS_ALPHA: cls.is_alpha,
attrs.IS_ASCII: cls.is_ascii,
attrs.IS_DIGIT: cls.is_digit,
attrs.IS_LOWER: cls.is_lower,
attrs.IS_UPPER: cls.is_upper,
attrs.LIKE_URL: cls.like_url,
attrs.LIKE_NUM: cls.like_number,
attrs.LIKE_EMAIL: cls.like_email,
attrs.IS_STOP: lambda string: False,
attrs.IS_OOV: lambda string: True
}
@classmethod
def default_data_dir(cls):
return path.join(path.dirname(__file__), 'data')
@classmethod
def default_vocab(cls, get_lex_attr=None, vectors=None, morphology=None, data_dir=None):
if data_dir is None:
data_dir = cls.default_data_dir()
if vectors is None:
vectors = cls.default_vectors(data_dir)
if get_lex_attr is None:
get_lex_attr = cls.default_lex_attrs(data_dir)
if morphology is None:
morphology = cls.default_morphology(data_dir)
return vocab = Vocab.from_dir(data_dir, get_lex_attr, vectors, morphology)
@classmethod
def default_tokenizer(cls, vocab, data_dir=None):
if data_dir is None:
data_dir = cls.default_data_dir()
return Tokenizer.from_dir(data_dir, vocab)
@classmethod
def default_tagger(cls, vocab, data_dir=None):
return Tagger.from_dir(data_dir, vocab)
@classmethod
def default_parser(cls, vocab, transition_system=None, data_dir=None):
if transition_system is None:
transition_system = ArcEager()
return Parser.from_dir(data_dir, vocab, transition_system)
@classmethod
def default_entity(cls, vocab, transition_system=None, data_dir=None):
if transition_system is None:
transition_system = BiluoPushDown()
return Parser.from_dir(data_dir, vocab, transition_system)
@classmethod
def default_matcher(cls, vocab, data_dir=None):
if data_dir is None:
data_dir = cls.default_data_dir()
return Matcher(data_dir, vocab)
@classmethod
def default_serializer(cls, vocab, data_dir=None):
if data_dir is None:
data_dir = cls.default_data_dir()
return Packer(data_dir, vocab)
def __init__(self, vocab=None, tokenizer=None, tagger=None, parser=None,
entity=None, matcher=None, serializer=None):
if data_dir is None:
data_dir = self.default_data_dir()
if vocab is None:
vocab = self.default_vocab(data_dir)
if tokenizer is None:
tokenizer = self.default_tokenizer(vocab, data_dir)
if tagger is None:
tagger = self.default_tagger(vocab, data_dir)
if entity is None:
entity = self.default_entity(vocab, data_dir)
if parser is None:
parser = self.default_parser(vocab, data_dir)
if matcher is None:
matcher = self.default_matcher(vocab, data_dir)
if serializer is None:
serializer = self.default_serializer(vocab, data_dir)
self.vocab = vocab
self.tokenizer = tokenizer
self.tagger = tagger
self.parser = parser
self.entity = entity
self.matcher = matcher
self.serializer = serializer
def __call__(self, text, tag=True, parse=True, entity=True):
"""Apply the pipeline to some text. The text can span multiple sentences,
and can contain arbtrary whitespace. Alignment into the original string
is preserved.
Args:
text (unicode): The text to be processed.
Returns:
tokens (spacy.tokens.Doc):
>>> from spacy.en import English
>>> nlp = English()
>>> tokens = nlp('An example sentence. Another example sentence.')
>>> tokens[0].orth_, tokens[0].head.tag_
('An', 'NN')
"""
tokens = self.tokenizer(text)
if self.tagger and tag:
self.tagger(tokens)
if self.matcher and entity:
self.matcher(tokens)
if self.parser and parse:
self.parser(tokens)
if self.entity and entity:
self.entity(tokens)
return tokens
def end_training(self, data_dir=None):
if data_dir is None:
data_dir = self.data_dir
self.parser.model.end_training()
self.entity.model.end_training()
self.tagger.model.end_training()
self.vocab.strings.dump(path.join(data_dir, 'vocab', 'strings.txt'))
with open(path.join(data_dir, 'vocab', 'serializer.json'), 'w') as file_:
file_.write(
json.dumps([
(TAG, list(self.tagger.freqs[TAG].items())),
(DEP, list(self.parser.moves.freqs[DEP].items())),
(ENT_IOB, list(self.entity.moves.freqs[ENT_IOB].items())),
(ENT_TYPE, list(self.entity.moves.freqs[ENT_TYPE].items())),
(HEAD, list(self.parser.moves.freqs[HEAD].items()))]))