spaCy/bin/parser/nn_train.py

262 lines
8.0 KiB
Python
Raw Normal View History

#!/usr/bin/env python
from __future__ import division
from __future__ import unicode_literals
import os
from os import path
import shutil
import codecs
import random
import plac
import cProfile
import pstats
import re
import spacy.util
from spacy.en import English
from spacy.en.pos import POS_TEMPLATES, POS_TAGS, setup_model_dir
from spacy.syntax.util import Config
from spacy.gold import read_json_file
from spacy.gold import GoldParse
from spacy.scorer import Scorer
2015-06-30 12:26:53 +00:00
from spacy.syntax.parser import Parser, get_templates
from spacy._theano import TheanoModel
import theano
import theano.tensor as T
from theano.printing import Print
import numpy
from collections import OrderedDict, defaultdict
theano.config.profile = False
theano.config.floatX = 'float32'
floatX = theano.config.floatX
2015-06-30 12:26:53 +00:00
def L1(L1_reg, *weights):
return L1_reg * sum(abs(w).sum() for w in weights)
2015-06-30 12:26:53 +00:00
def L2(L2_reg, *weights):
return L2_reg * sum((w ** 2).sum() for w in weights)
2015-06-30 12:26:53 +00:00
def rms_prop(loss, params, eta=1.0, rho=0.9, eps=1e-6):
updates = OrderedDict()
for param in params:
value = param.get_value(borrow=True)
accu = theano.shared(np.zeros(value.shape, dtype=value.dtype),
broadcastable=param.broadcastable)
2015-06-30 12:26:53 +00:00
grad = T.grad(loss, param)
accu_new = rho * accu + (1 - rho) * grad ** 2
updates[accu] = accu_new
updates[param] = param - (eta * grad / T.sqrt(accu_new + eps))
return updates
2015-06-30 12:26:53 +00:00
def relu(x):
return x * (x > 0)
def feed_layer(activation, weights, bias, input_):
return activation(T.dot(input_, weights) + bias)
2015-06-30 12:26:53 +00:00
def init_weights(n_in, n_out):
2015-06-29 14:45:14 +00:00
rng = numpy.random.RandomState(1235)
2015-06-29 08:56:02 +00:00
weights = numpy.asarray(
2015-06-29 08:56:02 +00:00
rng.standard_normal(size=(n_in, n_out)) * numpy.sqrt(2.0 / n_in),
dtype=theano.config.floatX
)
2015-06-29 08:56:02 +00:00
bias = numpy.zeros((n_out,), dtype=theano.config.floatX)
2015-06-30 12:26:53 +00:00
return [wrapper(weights, name='W'), wrapper(bias, name='b')]
2015-06-30 12:26:53 +00:00
def compile_model(n_classes, n_hidden, n_in, optimizer):
x = T.vector('x')
2015-06-30 12:26:53 +00:00
costs = T.ivector('costs')
loss = T.scalar('loss')
2015-06-30 12:26:53 +00:00
maxent_W, maxent_b = init_weights(n_hidden, n_classes)
hidden_W, hidden_b = init_weights(n_in, n_hidden)
# Feed the inputs forward through the network
p_y_given_x = feed_layer(
T.nnet.softmax,
2015-06-30 12:26:53 +00:00
maxent_W,
maxent_b,
feed_layer(
relu,
2015-06-30 12:26:53 +00:00
hidden_W,
hidden_b,
x))
2015-06-29 14:45:14 +00:00
2015-06-30 12:26:53 +00:00
loss = -T.log(T.sum(p_y_given_x[0] * T.eq(costs, 0)) + 1e-8)
train_model = theano.function(
name='train_model',
2015-06-30 12:26:53 +00:00
inputs=[x, costs],
outputs=[p_y_given_x[0], T.grad(loss, x), loss],
updates=optimizer(loss, [maxent_W, maxent_b, hidden_W, hidden_b]),
on_unused_input='warn'
)
evaluate_model = theano.function(
name='evaluate_model',
inputs=[x],
outputs=[
feed_layer(
T.nnet.softmax,
2015-06-30 12:26:53 +00:00
maxent_W,
maxent_b,
feed_layer(
relu,
2015-06-30 12:26:53 +00:00
hidden_W,
hidden_b,
x
)
)[0]
]
)
2015-06-30 12:26:53 +00:00
return train_model, evaluate_model
def score_model(scorer, nlp, annot_tuples, verbose=False):
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
nlp.tagger(tokens)
nlp.parser(tokens)
gold = GoldParse(tokens, annot_tuples)
scorer.score(tokens, gold, verbose=verbose)
def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic',
2015-06-29 14:45:14 +00:00
eta=0.01, mu=0.9, nv_hidden=100, nv_word=10, nv_tag=10, nv_label=10,
seed=0, n_sents=0, verbose=False):
dep_model_dir = path.join(model_dir, 'deps')
pos_model_dir = path.join(model_dir, 'pos')
if path.exists(dep_model_dir):
shutil.rmtree(dep_model_dir)
if path.exists(pos_model_dir):
shutil.rmtree(pos_model_dir)
os.mkdir(dep_model_dir)
os.mkdir(pos_model_dir)
setup_model_dir(sorted(POS_TAGS.keys()), POS_TAGS, POS_TEMPLATES, pos_model_dir)
Config.write(dep_model_dir, 'config',
seed=seed,
2015-06-30 12:26:53 +00:00
templates=tuple(),
labels=Language.ParserTransitionSystem.get_labels(gold_tuples),
vector_lengths=(nv_word, nv_tag, nv_label),
2015-06-27 23:29:37 +00:00
hidden_nodes=nv_hidden,
eta=eta,
mu=mu
)
2015-06-30 12:26:53 +00:00
# Bake-in hyper-parameters
optimizer = lambda loss, params: rms_prop(loss, params, eta=eta, rho=rho, eps=eps)
nlp = Language(data_dir=model_dir)
n_classes = nlp.parser.model.n_classes
train, predict = compile_model(n_classes, nv_hidden, n_in, optimizer)
nlp.parser.model = TheanoModel(n_classes, input_spec, train,
predict, model_loc)
if n_sents > 0:
gold_tuples = gold_tuples[:n_sents]
print "Itn.\tP.Loss\tUAS\tTag %\tToken %"
log_loc = path.join(model_dir, 'job.log')
for itn in range(n_iter):
scorer = Scorer()
loss = 0
for _, sents in gold_tuples:
for annot_tuples, ctnt in sents:
if len(annot_tuples[1]) == 1:
continue
score_model(scorer, nlp, annot_tuples)
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
nlp.tagger(tokens)
gold = GoldParse(tokens, annot_tuples, make_projective=True)
assert gold.is_projective
loss += nlp.parser.train(tokens, gold)
nlp.tagger.train(tokens, gold.tags)
random.shuffle(gold_tuples)
logline = '%d:\t%d\t%.3f\t%.3f\t%.3f' % (itn, loss, scorer.uas,
scorer.tags_acc,
scorer.token_acc)
print logline
with open(log_loc, 'aw') as file_:
file_.write(logline + '\n')
nlp.parser.model.end_training()
nlp.tagger.model.end_training()
nlp.vocab.strings.dump(path.join(model_dir, 'vocab', 'strings.txt'))
return nlp
def evaluate(nlp, gold_tuples, gold_preproc=True):
scorer = Scorer()
for raw_text, sents in gold_tuples:
for annot_tuples, brackets in sents:
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
nlp.tagger(tokens)
nlp.parser(tokens)
gold = GoldParse(tokens, annot_tuples)
scorer.score(tokens, gold)
return scorer
@plac.annotations(
train_loc=("Location of training file or directory"),
dev_loc=("Location of development file or directory"),
model_dir=("Location of output model directory",),
eval_only=("Skip training, and only evaluate", "flag", "e", bool),
n_sents=("Number of training sentences", "option", "n", int),
n_iter=("Number of training iterations", "option", "i", int),
verbose=("Verbose error reporting", "flag", "v", bool),
nv_word=("Word vector length", "option", "W", int),
nv_tag=("Tag vector length", "option", "T", int),
nv_label=("Label vector length", "option", "L", int),
nv_hidden=("Hidden nodes length", "option", "H", int),
eta=("Learning rate", "option", "E", float),
mu=("Momentum", "option", "M", float),
)
def main(train_loc, dev_loc, model_dir, n_sents=0, n_iter=15, verbose=False,
nv_word=10, nv_tag=10, nv_label=10, nv_hidden=10,
eta=0.1, mu=0.9, eval_only=False):
gold_train = list(read_json_file(train_loc, lambda doc: 'wsj' in doc['id']))
nlp = train(English, gold_train, model_dir,
feat_set='embed',
eta=eta, mu=mu,
2015-06-27 23:29:37 +00:00
nv_word=nv_word, nv_tag=nv_tag, nv_label=nv_label, nv_hidden=nv_hidden,
n_sents=n_sents, n_iter=n_iter,
verbose=verbose)
scorer = evaluate(nlp, list(read_json_file(dev_loc)))
print 'TOK', 100-scorer.token_acc
print 'POS', scorer.tags_acc
print 'UAS', scorer.uas
print 'LAS', scorer.las
print 'NER P', scorer.ents_p
print 'NER R', scorer.ents_r
print 'NER F', scorer.ents_f
if __name__ == '__main__':
plac.call(main)