spaCy/spacy/tokens/_serialize.py

162 lines
6.1 KiB
Python
Raw Normal View History

# coding: utf8
2018-08-22 11:12:51 +00:00
from __future__ import unicode_literals
import numpy
import gzip
import srsly
2018-08-22 11:12:51 +00:00
from thinc.neural.ops import NumpyOps
from ..compat import copy_reg
2018-09-28 12:27:24 +00:00
from ..tokens import Doc
2018-08-22 11:12:51 +00:00
from ..attrs import SPACY, ORTH
2019-09-18 13:15:37 +00:00
class DocBin(object):
"""Pack Doc objects for binary serialization.
2019-09-18 13:15:37 +00:00
The DocBin class lets you efficiently serialize the information from a
2019-09-18 11:25:47 +00:00
collection of Doc objects. You can control which information is serialized
by passing a list of attribute IDs, and optionally also specify whether the
2019-09-18 13:15:37 +00:00
user data is serialized. The DocBin is faster and produces smaller data
2019-09-18 11:25:47 +00:00
sizes than pickle, and allows you to deserialize without executing arbitrary
Python code.
2019-09-18 11:25:47 +00:00
The serialization format is gzipped msgpack, where the msgpack object has
the following structure:
2019-09-18 11:25:47 +00:00
{
"attrs": List[uint64], # e.g. [TAG, HEAD, ENT_IOB, ENT_TYPE]
"tokens": bytes, # Serialized numpy uint64 array with the token data
"spaces": bytes, # Serialized numpy boolean array with spaces data
"lengths": bytes, # Serialized numpy int32 array with the doc lengths
"strings": List[unicode] # List of unique strings in the token data
}
Strings for the words, tags, labels etc are represented by 64-bit hashes in
the token data, and every string that occurs at least once is passed via the
strings object. This means the storage is more efficient if you pack more
documents together, because you have less duplication in the strings.
A notable downside to this format is that you can't easily extract just one
document from the pallet.
"""
2019-07-10 17:37:20 +00:00
def __init__(self, attrs=None, store_user_data=False):
2019-09-18 13:15:37 +00:00
"""Create a DocBin object, to hold serialized annotations.
attrs (list): List of attributes to serialize. 'orth' and 'spacy' are
always serialized, so they're not required. Defaults to None.
"""
2018-08-22 11:12:51 +00:00
attrs = attrs or []
# Ensure ORTH is always attrs[0]
2019-07-10 17:37:20 +00:00
self.attrs = [attr for attr in attrs if attr != ORTH and attr != SPACY]
2018-08-22 11:12:51 +00:00
self.attrs.insert(0, ORTH)
self.tokens = []
self.spaces = []
2019-07-10 17:37:20 +00:00
self.user_data = []
2018-08-22 11:12:51 +00:00
self.strings = set()
2019-07-10 17:37:20 +00:00
self.store_user_data = store_user_data
2018-08-22 11:12:51 +00:00
def add(self, doc):
2019-09-18 13:15:37 +00:00
"""Add a doc's annotations to the DocBin for serialization."""
2018-08-22 11:12:51 +00:00
array = doc.to_array(self.attrs)
if len(array.shape) == 1:
array = array.reshape((array.shape[0], 1))
self.tokens.append(array)
spaces = doc.to_array(SPACY)
assert array.shape[0] == spaces.shape[0]
spaces = spaces.reshape((spaces.shape[0], 1))
self.spaces.append(numpy.asarray(spaces, dtype=bool))
self.strings.update(w.text for w in doc)
2019-07-10 17:37:20 +00:00
if self.store_user_data:
self.user_data.append(srsly.msgpack_dumps(doc.user_data))
2018-08-22 11:12:51 +00:00
def get_docs(self, vocab):
"""Recover Doc objects from the annotations, using the given vocab."""
2018-08-22 11:12:51 +00:00
for string in self.strings:
vocab[string]
orth_col = self.attrs.index(ORTH)
2019-07-10 17:37:20 +00:00
for i in range(len(self.tokens)):
tokens = self.tokens[i]
spaces = self.spaces[i]
2018-08-22 11:12:51 +00:00
words = [vocab.strings[orth] for orth in tokens[:, orth_col]]
doc = Doc(vocab, words=words, spaces=spaces)
doc = doc.from_array(self.attrs, tokens)
2019-07-10 17:37:20 +00:00
if self.store_user_data:
doc.user_data.update(srsly.msgpack_loads(self.user_data[i]))
2018-08-22 11:12:51 +00:00
yield doc
def merge(self, other):
2019-09-18 13:15:37 +00:00
"""Extend the annotations of this DocBin with the annotations from another."""
2018-08-22 11:12:51 +00:00
assert self.attrs == other.attrs
self.tokens.extend(other.tokens)
self.spaces.extend(other.spaces)
self.strings.update(other.strings)
2019-07-10 17:37:20 +00:00
if self.store_user_data:
self.user_data.extend(other.user_data)
2018-08-22 11:12:51 +00:00
def to_bytes(self):
2019-09-18 13:15:37 +00:00
"""Serialize the DocBin's annotations into a byte string."""
2018-08-22 11:12:51 +00:00
for tokens in self.tokens:
assert len(tokens.shape) == 2, tokens.shape
lengths = [len(tokens) for tokens in self.tokens]
msg = {
"attrs": self.attrs,
"tokens": numpy.vstack(self.tokens).tobytes("C"),
"spaces": numpy.vstack(self.spaces).tobytes("C"),
"lengths": numpy.asarray(lengths, dtype="int32").tobytes("C"),
"strings": list(self.strings),
2018-08-22 11:12:51 +00:00
}
2019-07-10 17:37:20 +00:00
if self.store_user_data:
msg["user_data"] = self.user_data
return gzip.compress(srsly.msgpack_dumps(msg))
2018-08-22 11:12:51 +00:00
def from_bytes(self, string):
2019-09-18 13:15:37 +00:00
"""Deserialize the DocBin's annotations from a byte string."""
msg = srsly.msgpack_loads(gzip.decompress(string))
self.attrs = msg["attrs"]
self.strings = set(msg["strings"])
lengths = numpy.fromstring(msg["lengths"], dtype="int32")
flat_spaces = numpy.fromstring(msg["spaces"], dtype=bool)
flat_tokens = numpy.fromstring(msg["tokens"], dtype="uint64")
2018-08-22 11:12:51 +00:00
shape = (flat_tokens.size // len(self.attrs), len(self.attrs))
flat_tokens = flat_tokens.reshape(shape)
flat_spaces = flat_spaces.reshape((flat_spaces.size, 1))
self.tokens = NumpyOps().unflatten(flat_tokens, lengths)
self.spaces = NumpyOps().unflatten(flat_spaces, lengths)
2019-07-10 17:37:20 +00:00
if self.store_user_data and "user_data" in msg:
self.user_data = list(msg["user_data"])
2018-08-22 11:12:51 +00:00
for tokens in self.tokens:
assert len(tokens.shape) == 2, tokens.shape
return self
2019-09-18 13:15:37 +00:00
def merge_bins(bins):
2019-07-10 17:37:20 +00:00
merged = None
2019-09-18 13:15:37 +00:00
for byte_string in bins:
2019-07-10 17:37:20 +00:00
if byte_string is not None:
2019-09-18 13:15:37 +00:00
doc_bin = DocBin(store_user_data=True).from_bytes(byte_string)
2019-07-10 17:37:20 +00:00
if merged is None:
2019-09-18 13:15:37 +00:00
merged = doc_bin
2019-07-10 17:37:20 +00:00
else:
2019-09-18 13:15:37 +00:00
merged.merge(doc_bin)
2019-07-10 17:37:20 +00:00
if merged is not None:
return merged.to_bytes()
else:
2019-07-11 09:49:36 +00:00
return b""
2018-08-22 11:12:51 +00:00
def pickle_bin(doc_bin):
return (unpickle_bin, (doc_bin.to_bytes(),))
2018-08-22 11:12:51 +00:00
2019-09-18 13:15:37 +00:00
def unpickle_bin(byte_string):
return DocBin().from_bytes(byte_string)
2018-08-22 11:12:51 +00:00
2019-09-18 13:15:37 +00:00
copy_reg.pickle(DocBin, pickle_bin, unpickle_bin)
2019-07-10 17:37:20 +00:00
# Compatibility, as we had named it this previously.
2019-09-18 13:15:37 +00:00
Binder = DocBin
2019-07-10 17:37:20 +00:00
2019-09-18 13:15:37 +00:00
__all__ = ["DocBin"]