mirror of https://github.com/explosion/spaCy.git
53 lines
1.5 KiB
Python
53 lines
1.5 KiB
Python
|
import pytest
|
||
|
|
||
|
from spacy import util
|
||
|
from spacy.lang.en import English
|
||
|
from spacy.language import Language
|
||
|
from spacy.tests.util import make_tempdir
|
||
|
|
||
|
|
||
|
def test_label_types():
|
||
|
nlp = Language()
|
||
|
nlp.add_pipe(nlp.create_pipe("senter"))
|
||
|
with pytest.raises(NotImplementedError):
|
||
|
nlp.get_pipe("senter").add_label("A")
|
||
|
|
||
|
SENT_STARTS = [0] * 14
|
||
|
SENT_STARTS[0] = 1
|
||
|
SENT_STARTS[5] = 1
|
||
|
SENT_STARTS[9] = 1
|
||
|
|
||
|
TRAIN_DATA = [
|
||
|
("I like green eggs. Eat blue ham. I like purple eggs.", {"sent_starts": SENT_STARTS}),
|
||
|
("She likes purple eggs. They hate ham. You like yellow eggs.", {"sent_starts": SENT_STARTS}),
|
||
|
]
|
||
|
|
||
|
|
||
|
def test_overfitting_IO():
|
||
|
# Simple test to try and quickly overfit the senter - ensuring the ML models work correctly
|
||
|
nlp = English()
|
||
|
senter = nlp.create_pipe("senter")
|
||
|
nlp.add_pipe(senter)
|
||
|
optimizer = nlp.begin_training()
|
||
|
|
||
|
for i in range(200):
|
||
|
losses = {}
|
||
|
nlp.update(TRAIN_DATA, sgd=optimizer, losses=losses)
|
||
|
assert losses["senter"] < 0.0001
|
||
|
|
||
|
# test the trained model
|
||
|
test_text = "I like eggs. There is ham. She likes ham."
|
||
|
doc = nlp(test_text)
|
||
|
gold_sent_starts = [0] * 12
|
||
|
gold_sent_starts[0] = 1
|
||
|
gold_sent_starts[4] = 1
|
||
|
gold_sent_starts[8] = 1
|
||
|
assert gold_sent_starts == [int(t.is_sent_start) for t in doc]
|
||
|
|
||
|
# Also test the results are still the same after IO
|
||
|
with make_tempdir() as tmp_dir:
|
||
|
nlp.to_disk(tmp_dir)
|
||
|
nlp2 = util.load_model_from_path(tmp_dir)
|
||
|
doc2 = nlp2(test_text)
|
||
|
assert gold_sent_starts == [int(t.is_sent_start) for t in doc2]
|