spaCy/spacy/ner/greedy_parser.pyx

119 lines
4.5 KiB
Cython
Raw Normal View History

from __future__ import division
from __future__ import unicode_literals
2014-11-10 05:28:56 +00:00
cimport cython
import random
import os
from os import path
import shutil
import json
from thinc.features cimport ConjFeat
from .context cimport fill_context
from .context cimport N_FIELDS
2014-11-10 05:28:56 +00:00
from .moves cimport Move
from .moves cimport fill_moves, transition, best_accepted
from .moves cimport set_accept_if_valid, set_accept_if_oracle
from ._state cimport entity_is_open
2014-11-10 05:28:56 +00:00
from .moves import get_n_moves
from ._state cimport State
from ._state cimport init_state
def setup_model_dir(tag_names, templates, model_dir):
if path.exists(model_dir):
shutil.rmtree(model_dir)
os.mkdir(model_dir)
config = {
'templates': templates,
'tag_names': tag_names,
}
with open(path.join(model_dir, 'config.json'), 'w') as file_:
json.dump(config, file_)
def train(train_sents, model_dir, nr_iter=10):
cdef Tokens tokens
parser = NERParser(model_dir)
for _ in range(nr_iter):
n_corr = 0
total = 0
for i, (tokens, golds) in enumerate(train_sents):
if any([g == 0 for g in golds]):
continue
n_corr += parser.train(tokens, golds)
total += len([g for g in golds if g != 0])
print('%.4f' % ((n_corr / total) * 100))
random.shuffle(train_sents)
parser.model.end_training()
parser.model.dump(path.join(model_dir, 'model'))
2014-11-10 05:28:56 +00:00
cdef class NERParser:
def __init__(self, model_dir):
self.mem = Pool()
cfg = json.load(open(path.join(model_dir, 'config.json')))
templates = cfg['templates']
self.tag_names = cfg['tag_names']
2014-11-10 05:28:56 +00:00
self.extractor = Extractor(templates, [ConjFeat] * len(templates))
self.n_classes = len(self.tag_names)
self._moves = <Move*>self.mem.alloc(len(self.tag_names), sizeof(Move))
fill_moves(self._moves, self.tag_names)
self.model = LinearModel(self.n_classes)
2014-11-10 05:28:56 +00:00
if path.exists(path.join(model_dir, 'model')):
self.model.load(path.join(model_dir, 'model'))
self._context = <atom_t*>self.mem.alloc(N_FIELDS, sizeof(atom_t))
self._feats = <feat_t*>self.mem.alloc(self.extractor.n+1, sizeof(feat_t))
self._values = <weight_t*>self.mem.alloc(self.extractor.n+1, sizeof(weight_t))
self._scores = <weight_t*>self.mem.alloc(self.model.nr_class, sizeof(weight_t))
cpdef int train(self, Tokens tokens, gold_classes) except -1:
2014-11-10 05:28:56 +00:00
cdef Pool mem = Pool()
cdef State* s = init_state(mem, tokens.length)
cdef Move* golds = <Move*>mem.alloc(len(gold_classes), sizeof(Move))
for tok_i, clas in enumerate(gold_classes):
golds[tok_i] = self._moves[clas]
assert golds[tok_i].clas == clas, '%d vs %d' % (golds[tok_i].clas, clas)
2014-11-10 05:28:56 +00:00
cdef Move* guess
n_correct = 0
cdef int f = 0
2014-11-10 05:28:56 +00:00
while s.i < tokens.length:
fill_context(self._context, s.i, tokens)
self.extractor.extract(self._feats, self._values, self._context, NULL)
self.model.score(self._scores, self._feats, self._values)
set_accept_if_valid(self._moves, self.n_classes, s)
guess = best_accepted(self._moves, self._scores, self.n_classes)
assert guess.clas != 0
assert gold_classes[s.i] != 0
set_accept_if_oracle(self._moves, golds, self.n_classes, s)
2014-11-10 05:28:56 +00:00
gold = best_accepted(self._moves, self._scores, self.n_classes)
if guess.clas == gold.clas:
counts = {}
n_correct += 1
else:
counts = {guess.clas: {}, gold.clas: {}}
self.extractor.count(counts[gold.clas], self._feats, 1)
self.extractor.count(counts[guess.clas], self._feats, -1)
2014-11-10 05:28:56 +00:00
self.model.update(counts)
gold_str = self.tag_names[gold.clas]
transition(s, guess)
2014-11-10 05:28:56 +00:00
tokens.ner[s.i-1] = s.tags[s.i-1]
return n_correct
2014-11-10 05:28:56 +00:00
cpdef int set_tags(self, Tokens tokens) except -1:
cdef Pool mem = Pool()
cdef State* s = init_state(mem, tokens.length)
cdef Move* move
while s.i < tokens.length:
fill_context(self._context, s.i, tokens)
self.extractor.extract(self._feats, self._values, self._context, NULL)
self.model.score(self._scores, self._feats, self._values)
set_accept_if_valid(self._moves, self.n_classes, s)
move = best_accepted(self._moves, self._scores, self.n_classes)
transition(s, move)
tokens.ner[s.i-1] = s.tags[s.i-1]