spaCy/spacy/pipeline/multitask.pyx

225 lines
7.4 KiB
Cython
Raw Normal View History

Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 11:42:59 +00:00
# cython: infer_types=True, profile=True, binding=True
from typing import Optional
import numpy
from thinc.api import CosineDistance, to_categorical, Model, Config
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 11:42:59 +00:00
from thinc.api import set_dropout_rate
from ..tokens.doc cimport Doc
from .pipe import Pipe
from .tagger import Tagger
from ..language import Language
from ._parser_internals import nonproj
Refactor pipeline components, config and language data (#5759) * Update with WIP * Update with WIP * Update with pipeline serialization * Update types and pipe factories * Add deep merge, tidy up and add tests * Fix pipe creation from config * Don't validate default configs on load * Update spacy/language.py Co-authored-by: Ines Montani <ines@ines.io> * Adjust factory/component meta error * Clean up factory args and remove defaults * Add test for failing empty dict defaults * Update pipeline handling and methods * provide KB as registry function instead of as object * small change in test to make functionality more clear * update example script for EL configuration * Fix typo * Simplify test * Simplify test * splitting pipes.pyx into separate files * moving default configs to each component file * fix batch_size type * removing default values from component constructors where possible (TODO: test 4725) * skip instead of xfail * Add test for config -> nlp with multiple instances * pipeline.pipes -> pipeline.pipe * Tidy up, document, remove kwargs * small cleanup/generalization for Tok2VecListener * use DEFAULT_UPSTREAM field * revert to avoid circular imports * Fix tests * Replace deprecated arg * Make model dirs require config * fix pickling of keyword-only arguments in constructor * WIP: clean up and integrate full config * Add helper to handle function args more reliably Now also includes keyword-only args * Fix config composition and serialization * Improve config debugging and add visual diff * Remove unused defaults and fix type * Remove pipeline and factories from meta * Update spacy/default_config.cfg Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> * Update spacy/default_config.cfg * small UX edits * avoid printing stack trace for debug CLI commands * Add support for language-specific factories * specify the section of the config which holds the model to debug * WIP: add Language.from_config * Update with language data refactor WIP * Auto-format * Add backwards-compat handling for Language.factories * Update morphologizer.pyx * Fix morphologizer * Update and simplify lemmatizers * Fix Japanese tests * Port over tagger changes * Fix Chinese and tests * Update to latest Thinc * WIP: xfail first Russian lemmatizer test * Fix component-specific overrides * fix nO for output layers in debug_model * Fix default value * Fix tests and don't pass objects in config * Fix deep merging * Fix lemma lookup data registry Only load the lookups if an entry is available in the registry (and if spacy-lookups-data is installed) * Add types * Add Vocab.from_config * Fix typo * Fix tests * Make config copying more elegant * Fix pipe analysis * Fix lemmatizers and is_base_form * WIP: move language defaults to config * Fix morphology type * Fix vocab * Remove comment * Update to latest Thinc * Add morph rules to config * Tidy up * Remove set_morphology option from tagger factory * Hack use_gpu * Move [pipeline] to top-level block and make [nlp.pipeline] list Allows separating component blocks from component order – otherwise, ordering the config would mean a changed component order, which is bad. Also allows initial config to define more components and not use all of them * Fix use_gpu and resume in CLI * Auto-format * Remove resume from config * Fix formatting and error * [pipeline] -> [components] * Fix types * Fix tagger test: requires set_morphology? Co-authored-by: Sofie Van Landeghem <svlandeg@users.noreply.github.com> Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com> Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
2020-07-22 11:42:59 +00:00
from ..attrs import POS, ID
from ..errors import Errors
default_model_config = """
[model]
@architectures = "spacy.MultiTask.v1"
maxout_pieces = 3
token_vector_width = 96
[model.tok2vec]
@architectures = "spacy.HashEmbedCNN.v1"
pretrained_vectors = null
width = 96
depth = 4
embed_size = 2000
window_size = 1
maxout_pieces = 2
subword_features = true
dropout = null
"""
DEFAULT_MT_MODEL = Config().from_str(default_model_config)["model"]
@Language.factory(
"nn_labeller",
default_config={"labels": None, "target": "dep_tag_offset", "model": DEFAULT_MT_MODEL}
)
def make_nn_labeller(nlp: Language, name: str, model: Model, labels: Optional[dict], target: str):
return MultitaskObjective(nlp.vocab, model, name)
class MultitaskObjective(Tagger):
"""Experimental: Assist training of a parser or tagger, by training a
side-objective.
"""
def __init__(self, vocab, model, name="nn_labeller", *, labels, target):
self.vocab = vocab
self.model = model
self.name = name
if target == "dep":
self.make_label = self.make_dep
elif target == "tag":
self.make_label = self.make_tag
elif target == "ent":
self.make_label = self.make_ent
elif target == "dep_tag_offset":
self.make_label = self.make_dep_tag_offset
elif target == "ent_tag":
self.make_label = self.make_ent_tag
elif target == "sent_start":
self.make_label = self.make_sent_start
elif hasattr(target, "__call__"):
self.make_label = target
else:
raise ValueError(Errors.E016)
cfg = {"labels": labels or {}, "target": target}
self.cfg = dict(cfg)
@property
def labels(self):
return self.cfg.setdefault("labels", {})
@labels.setter
def labels(self, value):
self.cfg["labels"] = value
def set_annotations(self, docs, dep_ids):
pass
def begin_training(self, get_examples=lambda: [], pipeline=None, sgd=None):
gold_examples = nonproj.preprocess_training_data(get_examples())
# for raw_text, doc_annot in gold_tuples:
for example in gold_examples:
for token in example.y:
label = self.make_label(token)
if label is not None and label not in self.labels:
self.labels[label] = len(self.labels)
self.model.initialize()
if sgd is None:
sgd = self.create_optimizer()
return sgd
def predict(self, docs):
tokvecs = self.model.get_ref("tok2vec")(docs)
scores = self.model.get_ref("softmax")(tokvecs)
return tokvecs, scores
def get_loss(self, examples, scores):
cdef int idx = 0
correct = numpy.zeros((scores.shape[0],), dtype="i")
guesses = scores.argmax(axis=1)
docs = [eg.predicted for eg in examples]
for i, eg in enumerate(examples):
# Handles alignment for tokenization differences
doc_annots = eg.get_aligned() # TODO
for j in range(len(eg.predicted)):
tok_annots = {key: values[j] for key, values in tok_annots.items()}
label = self.make_label(j, tok_annots)
if label is None or label not in self.labels:
correct[idx] = guesses[idx]
else:
correct[idx] = self.labels[label]
idx += 1
correct = self.model.ops.xp.array(correct, dtype="i")
d_scores = scores - to_categorical(correct, n_classes=scores.shape[1])
loss = (d_scores**2).sum()
return float(loss), d_scores
@staticmethod
def make_dep(token):
return token.dep_
@staticmethod
def make_tag(token):
return token.tag_
@staticmethod
def make_ent(token):
if token.ent_iob_ == "O":
return "O"
else:
return token.ent_iob_ + "-" + token.ent_type_
@staticmethod
def make_dep_tag_offset(token):
dep = token.dep_
tag = token.tag_
offset = token.head.i - token.i
offset = min(offset, 2)
offset = max(offset, -2)
return f"{dep}-{tag}:{offset}"
@staticmethod
def make_ent_tag(token):
if token.ent_iob_ == "O":
ent = "O"
else:
ent = token.ent_iob_ + "-" + token.ent_type_
tag = token.tag_
return f"{tag}-{ent}"
@staticmethod
def make_sent_start(token):
"""A multi-task objective for representing sentence boundaries,
using BILU scheme. (O is impossible)
"""
if token.is_sent_start and token.is_sent_end:
return "U-SENT"
elif token.is_sent_start:
return "B-SENT"
else:
return "I-SENT"
class ClozeMultitask(Pipe):
def __init__(self, vocab, model, **cfg):
self.vocab = vocab
self.model = model
self.cfg = cfg
self.distance = CosineDistance(ignore_zeros=True, normalize=False) # TODO: in config
def set_annotations(self, docs, dep_ids):
pass
def begin_training(self, get_examples=lambda: [], pipeline=None, sgd=None):
self.model.initialize()
X = self.model.ops.alloc((5, self.model.get_ref("tok2vec").get_dim("nO")))
self.model.output_layer.begin_training(X)
if sgd is None:
sgd = self.create_optimizer()
return sgd
def predict(self, docs):
tokvecs = self.model.get_ref("tok2vec")(docs)
vectors = self.model.get_ref("output_layer")(tokvecs)
return tokvecs, vectors
def get_loss(self, examples, vectors, prediction):
# The simplest way to implement this would be to vstack the
# token.vector values, but that's a bit inefficient, especially on GPU.
# Instead we fetch the index into the vectors table for each of our tokens,
# and look them up all at once. This prevents data copying.
ids = self.model.ops.flatten([eg.predicted.to_array(ID).ravel() for eg in examples])
target = vectors[ids]
gradient = self.distance.get_grad(prediction, target)
loss = self.distance.get_loss(prediction, target)
return loss, gradient
def update(self, examples, *, drop=0., set_annotations=False, sgd=None, losses=None):
pass
def rehearse(self, examples, drop=0., sgd=None, losses=None):
if losses is not None and self.name not in losses:
losses[self.name] = 0.
set_dropout_rate(self.model, drop)
try:
predictions, bp_predictions = self.model.begin_update([eg.predicted for eg in examples])
except AttributeError:
types = set([type(eg) for eg in examples])
raise TypeError(Errors.E978.format(name="ClozeMultitask", method="rehearse", types=types))
loss, d_predictions = self.get_loss(examples, self.vocab.vectors.data, predictions)
bp_predictions(d_predictions)
if sgd is not None:
self.model.finish_update(sgd)
if losses is not None:
losses[self.name] += loss
def add_label(self, label):
raise NotImplementedError