2014-12-30 10:20:15 +00:00
|
|
|
# cython: profile=True
|
|
|
|
from __future__ import unicode_literals
|
|
|
|
from __future__ import division
|
|
|
|
|
|
|
|
from os import path
|
|
|
|
import os
|
|
|
|
from collections import defaultdict
|
|
|
|
import shutil
|
|
|
|
import random
|
|
|
|
import json
|
|
|
|
import cython
|
|
|
|
|
|
|
|
from thinc.features cimport Feature, count_feats
|
|
|
|
|
|
|
|
|
|
|
|
def setup_model_dir(tag_names, tag_map, templates, model_dir):
|
|
|
|
if path.exists(model_dir):
|
|
|
|
shutil.rmtree(model_dir)
|
|
|
|
os.mkdir(model_dir)
|
|
|
|
config = {
|
|
|
|
'templates': templates,
|
|
|
|
'tag_names': tag_names,
|
|
|
|
'tag_map': tag_map
|
|
|
|
}
|
|
|
|
with open(path.join(model_dir, 'config.json'), 'w') as file_:
|
|
|
|
json.dump(config, file_)
|
|
|
|
|
|
|
|
|
|
|
|
cdef class Model:
|
2014-12-30 14:16:47 +00:00
|
|
|
def __init__(self, n_classes, templates, model_loc=None):
|
2014-12-30 10:20:15 +00:00
|
|
|
self._extractor = Extractor(templates)
|
|
|
|
self._model = LinearModel(n_classes, self._extractor.n_templ)
|
2014-12-30 14:16:47 +00:00
|
|
|
self.model_loc = model_loc
|
2014-12-30 10:20:15 +00:00
|
|
|
if self.model_loc and path.exists(self.model_loc):
|
|
|
|
self._model.load(self.model_loc, freq_thresh=0)
|
|
|
|
|
2014-12-30 14:16:47 +00:00
|
|
|
cdef const weight_t* score(self, atom_t* context) except NULL:
|
2014-12-30 10:20:15 +00:00
|
|
|
cdef int n_feats
|
|
|
|
cdef const Feature* feats = self._extractor.get_feats(context, &n_feats)
|
2014-12-30 14:16:47 +00:00
|
|
|
return self._model.get_scores(feats, n_feats)
|
|
|
|
|
|
|
|
cdef class_t predict(self, atom_t* context) except *:
|
|
|
|
cdef weight_t _
|
|
|
|
scores = self.score(context)
|
|
|
|
guess = _arg_max(scores, self._model.nr_class, &_)
|
2014-12-30 10:20:15 +00:00
|
|
|
return guess
|
|
|
|
|
|
|
|
cdef class_t predict_among(self, atom_t* context, const bint* valid) except *:
|
2014-12-30 14:16:47 +00:00
|
|
|
cdef weight_t _
|
|
|
|
scores = self.score(context)
|
|
|
|
return _arg_max_among(scores, valid, self._model.nr_class, &_)
|
2014-12-30 10:20:15 +00:00
|
|
|
|
|
|
|
cdef class_t predict_and_update(self, atom_t* context, const bint* valid,
|
|
|
|
const int* costs) except *:
|
|
|
|
cdef:
|
|
|
|
int n_feats
|
|
|
|
const Feature* feats
|
|
|
|
const weight_t* scores
|
|
|
|
|
|
|
|
int guess
|
|
|
|
int best
|
|
|
|
int cost
|
|
|
|
int i
|
|
|
|
weight_t score
|
2014-12-30 14:16:47 +00:00
|
|
|
weight_t _
|
2014-12-30 10:20:15 +00:00
|
|
|
|
|
|
|
feats = self._extractor.get_feats(context, &n_feats)
|
|
|
|
scores = self._model.get_scores(feats, n_feats)
|
2014-12-30 14:16:47 +00:00
|
|
|
guess = _arg_max_among(scores, valid, self._model.nr_class, &_)
|
2014-12-30 10:20:15 +00:00
|
|
|
cost = costs[guess]
|
|
|
|
if cost == 0:
|
|
|
|
self._model.update({})
|
|
|
|
return guess
|
|
|
|
|
|
|
|
guess_counts = defaultdict(int)
|
|
|
|
best_counts = defaultdict(int)
|
|
|
|
for i in range(n_feats):
|
|
|
|
feat = (feats[i].i, feats[i].key)
|
|
|
|
upd = feats[i].value * cost
|
|
|
|
best_counts[feat] += upd
|
|
|
|
guess_counts[feat] -= upd
|
|
|
|
best = -1
|
|
|
|
score = 0
|
|
|
|
for i in range(self._model.nr_class):
|
|
|
|
if valid[i] and costs[i] == 0 and (best == -1 or scores[i] > score):
|
|
|
|
best = i
|
|
|
|
score = scores[i]
|
|
|
|
self._model.update({guess: guess_counts, best: best_counts})
|
|
|
|
return guess
|
|
|
|
|
|
|
|
def end_training(self):
|
|
|
|
self._model.end_training()
|
|
|
|
self._model.dump(self.model_loc, freq_thresh=0)
|
|
|
|
|
|
|
|
|
|
|
|
cdef class HastyModel:
|
2014-12-30 14:16:47 +00:00
|
|
|
def __init__(self, n_classes, hasty_templates, full_templates, model_dir,
|
|
|
|
weight_t confidence=0.1):
|
|
|
|
self.n_classes = n_classes
|
|
|
|
self.confidence = confidence
|
|
|
|
self._hasty = Model(n_classes, hasty_templates, path.join(model_dir, 'hasty_model'))
|
|
|
|
self._full = Model(n_classes, full_templates, path.join(model_dir, 'full_model'))
|
2014-12-30 10:20:15 +00:00
|
|
|
|
|
|
|
cdef class_t predict(self, atom_t* context) except *:
|
2014-12-30 14:16:47 +00:00
|
|
|
cdef weight_t ratio
|
|
|
|
scores = self._hasty.score(context)
|
|
|
|
guess = _arg_max(scores, self.n_classes, &ratio)
|
|
|
|
if ratio < self.confidence:
|
|
|
|
return guess
|
|
|
|
else:
|
|
|
|
return self._full.predict(context)
|
2014-12-30 10:20:15 +00:00
|
|
|
|
|
|
|
cdef class_t predict_among(self, atom_t* context, bint* valid) except *:
|
2014-12-30 14:16:47 +00:00
|
|
|
cdef weight_t ratio
|
|
|
|
scores = self._hasty.score(context)
|
|
|
|
guess = _arg_max_among(scores, valid, self.n_classes, &ratio)
|
|
|
|
if ratio < self.confidence:
|
|
|
|
return guess
|
|
|
|
else:
|
|
|
|
return self._full.predict(context)
|
|
|
|
|
|
|
|
cdef class_t predict_and_update(self, atom_t* context, bint* valid, int* costs) except *:
|
|
|
|
cdef weight_t ratio
|
|
|
|
scores = self._hasty.score(context)
|
|
|
|
_arg_max_among(scores, valid, self.n_classes, &ratio)
|
|
|
|
hasty_guess = self._hasty.predict_and_update(context, valid, costs)
|
|
|
|
full_guess = self._full.predict_and_update(context, valid, costs)
|
|
|
|
if ratio < self.confidence:
|
|
|
|
return hasty_guess
|
|
|
|
else:
|
|
|
|
return full_guess
|
2014-12-30 10:20:15 +00:00
|
|
|
|
2014-12-30 14:16:47 +00:00
|
|
|
def end_training(self):
|
|
|
|
self._hasty.end_training()
|
|
|
|
self._full.end_training()
|
2014-12-30 10:20:15 +00:00
|
|
|
|
|
|
|
|
2014-12-30 14:16:47 +00:00
|
|
|
@cython.cdivision(True)
|
|
|
|
cdef int _arg_max(const weight_t* scores, int n_classes, weight_t* ratio) except -1:
|
2014-12-30 10:20:15 +00:00
|
|
|
cdef int best = 0
|
|
|
|
cdef weight_t score = scores[best]
|
|
|
|
cdef int i
|
2014-12-30 14:16:47 +00:00
|
|
|
ratio[0] = 0.0
|
2014-12-30 10:20:15 +00:00
|
|
|
for i in range(1, n_classes):
|
|
|
|
if scores[i] >= score:
|
2014-12-30 14:16:47 +00:00
|
|
|
if score > 0:
|
|
|
|
ratio[0] = score / scores[i]
|
2014-12-30 10:20:15 +00:00
|
|
|
score = scores[i]
|
|
|
|
best = i
|
|
|
|
return best
|
|
|
|
|
|
|
|
|
2014-12-30 14:16:47 +00:00
|
|
|
@cython.cdivision(True)
|
|
|
|
cdef int _arg_max_among(const weight_t* scores, const bint* valid, int n_classes,
|
|
|
|
weight_t* ratio) except -1:
|
2014-12-30 10:20:15 +00:00
|
|
|
cdef int clas
|
|
|
|
cdef weight_t score = 0
|
|
|
|
cdef int best = -1
|
2014-12-30 14:16:47 +00:00
|
|
|
ratio[0] = 0
|
2014-12-30 10:20:15 +00:00
|
|
|
for clas in range(n_classes):
|
|
|
|
if valid[clas] and (best == -1 or scores[clas] > score):
|
2014-12-30 14:16:47 +00:00
|
|
|
if score > 0:
|
|
|
|
ratio[0] = score / scores[clas]
|
2014-12-30 10:20:15 +00:00
|
|
|
score = scores[clas]
|
|
|
|
best = clas
|
|
|
|
return best
|