from collections import defaultdict
import pytest
from spacy.pipeline.defaults import default_ner
from spacy.pipeline import EntityRecognizer
from spacy.lang.en import English
from spacy.tokens import Span
# skipped after removing Beam stuff during the Example/GoldParse refactor
@pytest.mark.skip
def test_issue4313():
""" This should not crash or exit with some strange error code """
beam_width = 16
beam_density = 0.0001
nlp = English()
config = {
"learn_tokens": False,
"min_action_freq": 30,
"beam_width": 1,
"beam_update_prob": 1.0,
}
ner = EntityRecognizer(nlp.vocab, default_ner(), **config)
ner.add_label("SOME_LABEL")
ner.begin_training([])
nlp.add_pipe(ner)
# add a new label to the doc
doc = nlp("What do you think about Apple ?")
assert len(ner.labels) == 1
assert "SOME_LABEL" in ner.labels
apple_ent = Span(doc, 5, 6, label="MY_ORG")
doc.ents = list(doc.ents) + [apple_ent]
# ensure the beam_parse still works with the new label
docs = [doc]
beams = nlp.entity.beam_parse(
docs, beam_width=beam_width, beam_density=beam_density
)
for doc, beam in zip(docs, beams):
entity_scores = defaultdict(float)
for score, ents in nlp.entity.moves.get_beam_parses(beam):
for start, end, label in ents:
entity_scores[(start, end, label)] += score