spaCy/spacy/_align.pyx

256 lines
6.8 KiB
Cython
Raw Normal View History

# cython: infer_types=True
'''Do Levenshtein alignment, for evaluation of tokenized input.
Random notes:
r i n g
0 1 2 3 4
r 1 0 1 2 3
a 2 1 1 2 3
n 3 2 2 1 2
g 4 3 3 2 1
0,0: (1,1)=min(0+0,1+1,1+1)=0 S
1,0: (2,1)=min(1+1,0+1,2+1)=1 D
2,0: (3,1)=min(2+1,3+1,1+1)=2 D
3,0: (4,1)=min(3+1,4+1,2+1)=3 D
0,1: (1,2)=min(1+1,2+1,0+1)=1 D
1,1: (2,2)=min(0+1,1+1,1+1)=1 S
2,1: (3,2)=min(1+1,1+1,2+1)=2 S or I
3,1: (4,2)=min(2+1,2+1,3+1)=3 S or I
0,2: (1,3)=min(2+1,3+1,1+1)=2 I
1,2: (2,3)=min(1+1,2+1,1+1)=2 S or I
2,2: (3,3)
3,2: (4,3)
At state (i, j) we're asking "How do I transform S[:i+1] to T[:j+1]?"
We know the costs to transition:
S[:i] -> T[:j] (at D[i,j])
S[:i+1] -> T[:j] (at D[i+1,j])
S[:i] -> T[:j+1] (at D[i,j+1])
Further, now we can transform:
S[:i+1] -> S[:i] (DEL) for 1,
T[:j+1] -> T[:j] (INS) for 1.
S[i+1] -> T[j+1] (SUB) for 0 or 1
Therefore we have the costs:
SUB: Cost(S[:i]->T[:j]) + Cost(S[i]->S[j])
i.e. D[i, j] + S[i+1] != T[j+1]
INS: Cost(S[:i+1]->T[:j]) + Cost(T[:j+1]->T[:j])
i.e. D[i+1,j] + 1
DEL: Cost(S[:i]->T[:j+1]) + Cost(S[:i+1]->S[:i])
i.e. D[i,j+1] + 1
Source string S has length m, with index i
Target string T has length n, with index j
Output two alignment vectors: i2j (length m) and j2i (length n)
# function LevenshteinDistance(char s[1..m], char t[1..n]):
# for all i and j, d[i,j] will hold the Levenshtein distance between
# the first i characters of s and the first j characters of t
# note that d has (m+1)*(n+1) values
# set each element in d to zero
ring rang
- r i n g
- 0 0 0 0 0
r 0 0 0 0 0
a 0 0 0 0 0
n 0 0 0 0 0
g 0 0 0 0 0
# source prefixes can be transformed into empty string by
# dropping all characters
# d[i, 0] := i
ring rang
- r i n g
- 0 0 0 0 0
r 1 0 0 0 0
a 2 0 0 0 0
n 3 0 0 0 0
g 4 0 0 0 0
# target prefixes can be reached from empty source prefix
# by inserting every character
# d[0, j] := j
- r i n g
- 0 1 2 3 4
r 1 0 0 0 0
a 2 0 0 0 0
n 3 0 0 0 0
g 4 0 0 0 0
'''
from __future__ import unicode_literals
from libc.stdint cimport uint32_t
import numpy
cimport numpy as np
from .compat import unicode_
from murmurhash.mrmr cimport hash32
def align(S, T):
cdef int m = len(S)
cdef int n = len(T)
cdef np.ndarray matrix = numpy.zeros((m+1, n+1), dtype='int32')
cdef np.ndarray i2j = numpy.zeros((m,), dtype='i')
cdef np.ndarray j2i = numpy.zeros((n,), dtype='i')
cdef np.ndarray S_arr = _convert_sequence(S)
cdef np.ndarray T_arr = _convert_sequence(T)
fill_matrix(<int*>matrix.data,
<const int*>S_arr.data, m, <const int*>T_arr.data, n)
fill_i2j(i2j, matrix)
fill_j2i(j2i, matrix)
for i in range(i2j.shape[0]):
if i2j[i] >= 0 and len(S[i]) != len(T[i2j[i]]):
i2j[i] = -1
for j in range(j2i.shape[0]):
if j2i[j] >= 0 and len(T[j]) != len(S[j2i[j]]):
j2i[j] = -1
return matrix[-1,-1], i2j, j2i, matrix
def multi_align(np.ndarray i2j, np.ndarray j2i, i_lengths, j_lengths):
'''Let's say we had:
Guess: [aa bb cc dd]
Truth: [aa bbcc dd]
i2j: [0, None, -2, 2]
j2i: [0, -2, 3]
We want:
i2j_multi: {1: 1, 2: 1}
j2i_multi: {}
'''
i2j_miss = _get_regions(i2j, i_lengths)
j2i_miss = _get_regions(j2i, j_lengths)
i2j_multi, j2i_multi = _get_mapping(i2j_miss, j2i_miss, i_lengths, j_lengths)
return i2j_multi, j2i_multi
def _get_regions(alignment, lengths):
regions = {}
start = None
offset = 0
for i in range(len(alignment)):
if alignment[i] < 0:
if start is None:
start = offset
regions.setdefault(start, [])
regions[start].append(i)
else:
start = None
offset += lengths[i]
return regions
def _get_mapping(miss1, miss2, lengths1, lengths2):
i2j = {}
j2i = {}
for start, region1 in miss1.items():
if not region1 or start not in miss2:
continue
region2 = miss2[start]
if sum(lengths1[i] for i in region1) == sum(lengths2[i] for i in region2):
j = region2.pop(0)
buff = []
# Consume tokens from region 1, until we meet the length of the
# first token in region2. If we do, align the tokens. If
# we exceed the length, break.
while region1:
buff.append(region1.pop(0))
if sum(lengths1[i] for i in buff) == lengths2[j]:
for i in buff:
i2j[i] = j
j2i[j] = buff[-1]
j += 1
buff = []
elif sum(lengths1[i] for i in buff) > lengths2[j]:
break
else:
if buff and sum(lengths1[i] for i in buff) == lengths2[j]:
for i in buff:
i2j[i] = j
j2i[j] = buff[-1]
return i2j, j2i
def _convert_sequence(seq):
if isinstance(seq, numpy.ndarray):
return numpy.ascontiguousarray(seq, dtype='uint32_t')
cdef np.ndarray output = numpy.zeros((len(seq),), dtype='uint32')
cdef bytes item_bytes
for i, item in enumerate(seq):
2018-08-15 23:04:34 +00:00
if item == "``":
item = '"'
elif item == "''":
item = '"'
if isinstance(item, unicode):
item_bytes = item.encode('utf8')
else:
item_bytes = item
output[i] = hash32(<void*><char*>item_bytes, len(item_bytes), 0)
return output
cdef void fill_matrix(int* D,
const int* S, int m, const int* T, int n) nogil:
m1 = m+1
n1 = n+1
for i in range(m1*n1):
D[i] = 0
for i in range(m1):
D[i*n1] = i
for j in range(n1):
D[j] = j
cdef int sub_cost, ins_cost, del_cost
for j in range(n):
for i in range(m):
i_j = i*n1 + j
i1_j1 = (i+1)*n1 + j+1
i1_j = (i+1)*n1 + j
i_j1 = i*n1 + j+1
if S[i] != T[j]:
sub_cost = D[i_j] + 1
else:
sub_cost = D[i_j]
del_cost = D[i_j1] + 1
ins_cost = D[i1_j] + 1
best = min(min(sub_cost, ins_cost), del_cost)
D[i1_j1] = best
cdef void fill_i2j(np.ndarray i2j, np.ndarray D) except *:
j = D.shape[1]-2
cdef int i = D.shape[0]-2
while i >= 0:
while D[i+1, j] < D[i+1, j+1]:
j -= 1
if D[i, j+1] < D[i+1, j+1]:
i2j[i] = -1
else:
i2j[i] = j
j -= 1
i -= 1
cdef void fill_j2i(np.ndarray j2i, np.ndarray D) except *:
i = D.shape[0]-2
cdef int j = D.shape[1]-2
while j >= 0:
while D[i, j+1] < D[i+1, j+1]:
i -= 1
if D[i+1, j] < D[i+1, j+1]:
j2i[j] = -1
else:
j2i[j] = i
i -= 1
j -= 1