spaCy/spacy/tests/serialize/test_serialize_language.py

65 lines
1.9 KiB
Python
Raw Normal View History

import pytest
2018-06-29 12:33:12 +00:00
import re
Default settings to configurations (#4995) * fix grad_clip naming * cleaning up pretrained_vectors out of cfg * further refactoring Model init's * move Model building out of pipes * further refactor to require a model config when creating a pipe * small fixes * making cfg in nn_parser more consistent * fixing nr_class for parser * fixing nn_parser's nO * fix printing of loss * architectures in own file per type, consistent naming * convenience methods default_tagger_config and default_tok2vec_config * let create_pipe access default config if available for that component * default_parser_config * move defaults to separate folder * allow reading nlp from package or dir with argument 'name' * architecture spacy.VocabVectors.v1 to read static vectors from file * cleanup * default configs for nel, textcat, morphologizer, tensorizer * fix imports * fixing unit tests * fixes and clean up * fixing defaults, nO, fix unit tests * restore parser IO * fix IO * 'fix' serialization test * add *.cfg to manifest * fix example configs with additional arguments * replace Morpohologizer with Tagger * add IO bit when testing overfitting of tagger (currently failing) * fix IO - don't initialize when reading from disk * expand overfitting tests to also check IO goes OK * remove dropout from HashEmbed to fix Tagger performance * add defaults for sentrec * update thinc * always pass a Model instance to a Pipe * fix piped_added statement * remove obsolete W029 * remove obsolete errors * restore byte checking tests (work again) * clean up test * further test cleanup * convert from config to Model in create_pipe * bring back error when component is not initialized * cleanup * remove calls for nlp2.begin_training * use thinc.api in imports * allow setting charembed's nM and nC * fix for hardcoded nM/nC + unit test * formatting fixes * trigger build
2020-02-27 17:42:27 +00:00
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-24 21:38:44 +00:00
from spacy.language import Language
from spacy.tokenizer import Tokenizer
from ..util import make_tempdir
@pytest.fixture
def meta_data():
return {
"name": "name-in-fixture",
"version": "version-in-fixture",
"description": "description-in-fixture",
"author": "author-in-fixture",
"email": "email-in-fixture",
"url": "url-in-fixture",
"license": "license-in-fixture",
"vectors": {"width": 0, "vectors": 0, "keys": 0, "name": None},
}
def test_serialize_language_meta_disk(meta_data):
language = Language(meta=meta_data)
with make_tempdir() as d:
language.to_disk(d)
new_language = Language().from_disk(d)
assert new_language.meta == language.meta
2018-06-29 12:33:12 +00:00
def test_serialize_with_custom_tokenizer():
"""Test that serialization with custom tokenizer works without token_match.
See: https://support.prodi.gy/t/how-to-save-a-custom-tokenizer/661/2
"""
prefix_re = re.compile(r"""1/|2/|:[0-9][0-9][A-K]:|:[0-9][0-9]:""")
suffix_re = re.compile(r"""""")
infix_re = re.compile(r"""[~]""")
2018-06-29 12:33:12 +00:00
def custom_tokenizer(nlp):
return Tokenizer(
nlp.vocab,
{},
prefix_search=prefix_re.search,
suffix_search=suffix_re.search,
infix_finditer=infix_re.finditer,
)
2018-06-29 12:33:12 +00:00
nlp = Language()
nlp.tokenizer = custom_tokenizer(nlp)
with make_tempdir() as d:
nlp.to_disk(d)
def test_serialize_language_exclude(meta_data):
name = "name-in-fixture"
nlp = Language(meta=meta_data)
assert nlp.meta["name"] == name
new_nlp = Language().from_bytes(nlp.to_bytes())
Default settings to configurations (#4995) * fix grad_clip naming * cleaning up pretrained_vectors out of cfg * further refactoring Model init's * move Model building out of pipes * further refactor to require a model config when creating a pipe * small fixes * making cfg in nn_parser more consistent * fixing nr_class for parser * fixing nn_parser's nO * fix printing of loss * architectures in own file per type, consistent naming * convenience methods default_tagger_config and default_tok2vec_config * let create_pipe access default config if available for that component * default_parser_config * move defaults to separate folder * allow reading nlp from package or dir with argument 'name' * architecture spacy.VocabVectors.v1 to read static vectors from file * cleanup * default configs for nel, textcat, morphologizer, tensorizer * fix imports * fixing unit tests * fixes and clean up * fixing defaults, nO, fix unit tests * restore parser IO * fix IO * 'fix' serialization test * add *.cfg to manifest * fix example configs with additional arguments * replace Morpohologizer with Tagger * add IO bit when testing overfitting of tagger (currently failing) * fix IO - don't initialize when reading from disk * expand overfitting tests to also check IO goes OK * remove dropout from HashEmbed to fix Tagger performance * add defaults for sentrec * update thinc * always pass a Model instance to a Pipe * fix piped_added statement * remove obsolete W029 * remove obsolete errors * restore byte checking tests (work again) * clean up test * further test cleanup * convert from config to Model in create_pipe * bring back error when component is not initialized * cleanup * remove calls for nlp2.begin_training * use thinc.api in imports * allow setting charembed's nM and nC * fix for hardcoded nM/nC + unit test * formatting fixes * trigger build
2020-02-27 17:42:27 +00:00
assert new_nlp.meta["name"] == name
new_nlp = Language().from_bytes(nlp.to_bytes(), exclude=["meta"])
assert not new_nlp.meta["name"] == name
new_nlp = Language().from_bytes(nlp.to_bytes(exclude=["meta"]))
assert not new_nlp.meta["name"] == name