spaCy/spacy/syntax/_beam_utils.pyx

270 lines
10 KiB
Cython
Raw Normal View History

2017-08-12 19:47:45 +00:00
# cython: infer_types=True
# cython: profile=True
2017-08-12 19:47:45 +00:00
cimport numpy as np
import numpy
from cpython.ref cimport PyObject, Py_INCREF, Py_XDECREF
from thinc.extra.search cimport Beam
from thinc.extra.search import MaxViolation
from thinc.typedefs cimport hash_t, class_t
from .transition_system cimport TransitionSystem, Transition
from .stateclass cimport StateClass
from ..gold cimport GoldParse
from ..tokens.doc cimport Doc
# These are passed as callbacks to thinc.search.Beam
cdef int _transition_state(void* _dest, void* _src, class_t clas, void* _moves) except -1:
dest = <StateClass>_dest
src = <StateClass>_src
moves = <const Transition*>_moves
dest.clone(src)
moves[clas].do(dest.c, moves[clas].label)
cdef int _check_final_state(void* _state, void* extra_args) except -1:
return (<StateClass>_state).is_final()
def _cleanup(Beam beam):
for i in range(beam.width):
Py_XDECREF(<PyObject*>beam._states[i].content)
Py_XDECREF(<PyObject*>beam._parents[i].content)
cdef hash_t _hash_state(void* _state, void* _) except 0:
state = <StateClass>_state
if state.c.is_final():
return 1
else:
return state.c.hash()
cdef class ParserBeam(object):
cdef public TransitionSystem moves
2017-08-12 22:15:16 +00:00
cdef public object states
2017-08-12 19:47:45 +00:00
cdef public object golds
cdef public object beams
2017-08-12 22:15:16 +00:00
def __init__(self, TransitionSystem moves, states, golds,
2017-08-12 19:47:45 +00:00
int width=4, float density=0.001):
self.moves = moves
2017-08-12 22:15:16 +00:00
self.states = states
2017-08-12 19:47:45 +00:00
self.golds = golds
self.beams = []
cdef Beam beam
2017-08-12 22:15:16 +00:00
cdef StateClass state, st
for state in states:
2017-08-12 19:47:45 +00:00
beam = Beam(self.moves.n_moves, width, density)
2017-08-12 22:15:16 +00:00
beam.initialize(self.moves.init_beam_state, state.c.length, state.c._sent)
2017-08-13 23:02:05 +00:00
for i in range(beam.width):
2017-08-12 22:15:16 +00:00
st = <StateClass>beam.at(i)
st.c.offset = state.c.offset
2017-08-12 19:47:45 +00:00
self.beams.append(beam)
2017-08-13 00:22:52 +00:00
def __dealloc__(self):
if self.beams is not None:
for beam in self.beams:
if beam is not None:
_cleanup(beam)
2017-08-12 19:47:45 +00:00
@property
def is_done(self):
2017-08-13 00:22:52 +00:00
return all(b.is_done for b in self.beams)
2017-08-12 19:47:45 +00:00
def __getitem__(self, i):
return self.beams[i]
def __len__(self):
return len(self.beams)
def advance(self, scores, follow_gold=False):
cdef Beam beam
for i, beam in enumerate(self.beams):
2017-08-13 23:02:05 +00:00
if beam.is_done or not scores[i].size:
continue
2017-08-12 19:47:45 +00:00
self._set_scores(beam, scores[i])
if self.golds is not None:
self._set_costs(beam, self.golds[i], follow_gold=follow_gold)
beam.advance(_transition_state, NULL, <void*>self.moves.c)
2017-08-13 00:22:52 +00:00
beam.check_done(_check_final_state, NULL)
2017-08-13 23:02:05 +00:00
if beam.is_done:
for j in range(beam.size):
if is_gold(<StateClass>beam.at(j), self.golds[i], self.moves.strings):
beam._states[j].loss = 0.0
elif beam._states[j].loss == 0.0:
beam._states[j].loss = 1.0
2017-08-13 00:22:52 +00:00
def _set_scores(self, Beam beam, float[:, ::1] scores):
cdef float* c_scores = &scores[0, 0]
2017-08-12 19:47:45 +00:00
for i in range(beam.size):
state = <StateClass>beam.at(i)
2017-08-12 23:21:54 +00:00
if not state.is_final():
for j in range(beam.nr_class):
2017-08-13 00:22:52 +00:00
beam.scores[i][j] = c_scores[i * beam.nr_class + j]
self.moves.set_valid(beam.is_valid[i], state.c)
2017-08-12 19:47:45 +00:00
def _set_costs(self, Beam beam, GoldParse gold, int follow_gold=False):
for i in range(beam.size):
state = <StateClass>beam.at(i)
2017-08-13 00:22:52 +00:00
if not state.c.is_final():
self.moves.set_costs(beam.is_valid[i], beam.costs[i], state, gold)
if follow_gold:
for j in range(beam.nr_class):
if beam.costs[i][j] >= 1:
beam.is_valid[i][j] = 0
def is_gold(StateClass state, GoldParse gold, strings):
predicted = set()
truth = set()
for i in range(gold.length):
if gold.cand_to_gold[i] is None:
continue
if state.safe_get(i).dep:
predicted.add((i, state.H(i), strings[state.safe_get(i).dep]))
else:
predicted.add((i, state.H(i), 'ROOT'))
id_, word, tag, head, dep, ner = gold.orig_annot[gold.cand_to_gold[i]]
truth.add((id_, head, dep))
return truth == predicted
2017-08-12 19:47:45 +00:00
def get_token_ids(states, int n_tokens):
cdef StateClass state
cdef np.ndarray ids = numpy.zeros((len(states), n_tokens),
2017-08-12 22:15:16 +00:00
dtype='int32', order='C')
2017-08-12 19:47:45 +00:00
c_ids = <int*>ids.data
for i, state in enumerate(states):
if not state.is_final():
state.c.set_context_tokens(c_ids, n_tokens)
2017-08-12 22:15:16 +00:00
else:
ids[i] = -1
2017-08-12 19:47:45 +00:00
c_ids += ids.shape[1]
return ids
nr_update = 0
2017-08-12 22:15:16 +00:00
def update_beam(TransitionSystem moves, int nr_feature, int max_steps,
states, tokvecs, golds,
2017-08-12 19:47:45 +00:00
state2vec, vec2scores, drop=0., sgd=None,
losses=None, int width=4, float density=0.001):
global nr_update
nr_update += 1
2017-08-12 22:15:16 +00:00
pbeam = ParserBeam(moves, states, golds,
2017-08-12 19:47:45 +00:00
width=width, density=density)
2017-08-12 22:15:16 +00:00
gbeam = ParserBeam(moves, states, golds,
2017-08-13 00:22:52 +00:00
width=width, density=0.0)
2017-08-13 23:02:05 +00:00
cdef StateClass state
2017-08-12 22:15:16 +00:00
beam_maps = []
2017-08-12 19:47:45 +00:00
backprops = []
2017-08-12 22:15:16 +00:00
violns = [MaxViolation() for _ in range(len(states))]
for t in range(max_steps):
2017-08-13 23:02:05 +00:00
# The beam maps let us find the right row in the flattened scores
# arrays for each state. States are identified by (example id, history).
# We keep a different beam map for each step (since we'll have a flat
# scores array for each step). The beam map will let us take the per-state
# losses, and compute the gradient for each (step, state, class).
2017-08-12 22:15:16 +00:00
beam_maps.append({})
2017-08-13 23:02:05 +00:00
# Gather all states from the two beams in a list. Some stats may occur
# in both beams. To figure out which beam each state belonged to,
# we keep two lists of indices, p_indices and g_indices
states, p_indices, g_indices = get_states(pbeam, gbeam, beam_maps[-1], nr_update)
if not states:
break
2017-08-13 23:02:05 +00:00
# Now that we have our flat list of states, feed them through the model
2017-08-12 19:47:45 +00:00
token_ids = get_token_ids(states, nr_feature)
vectors, bp_vectors = state2vec.begin_update(token_ids, drop=drop)
scores, bp_scores = vec2scores.begin_update(vectors, drop=drop)
2017-08-12 22:15:16 +00:00
2017-08-13 23:02:05 +00:00
# Store the callbacks for the backward pass
2017-08-12 19:47:45 +00:00
backprops.append((token_ids, bp_vectors, bp_scores))
2017-08-13 23:02:05 +00:00
# Unpack the flat scores into lists for the two beams. The indices arrays
# tell us which example and state the scores-row refers to.
2017-08-12 23:21:54 +00:00
p_scores = [numpy.ascontiguousarray(scores[indices], dtype='f') for indices in p_indices]
g_scores = [numpy.ascontiguousarray(scores[indices], dtype='f') for indices in g_indices]
2017-08-13 23:02:05 +00:00
# Now advance the states in the beams. The gold beam is contrained to
# to follow only gold analyses.
2017-08-12 19:47:45 +00:00
pbeam.advance(p_scores)
gbeam.advance(g_scores, follow_gold=True)
2017-08-13 23:02:05 +00:00
# Track the "maximum violation", to use in the update.
2017-08-12 19:47:45 +00:00
for i, violn in enumerate(violns):
violn.check_crf(pbeam[i], gbeam[i])
2017-08-13 00:22:52 +00:00
2017-08-13 23:02:05 +00:00
# Only make updates if we have non-gold states
histories = [((v.p_hist + v.g_hist) if v.p_hist else []) for v in violns]
losses = [((v.p_probs + v.g_probs) if v.p_probs else []) for v in violns]
2017-08-12 22:15:16 +00:00
states_d_scores = get_gradient(moves.n_moves, beam_maps,
2017-08-12 19:47:45 +00:00
histories, losses)
2017-08-13 23:02:05 +00:00
assert len(states_d_scores) == len(backprops), (len(states_d_scores), len(backprops))
2017-08-12 19:47:45 +00:00
return states_d_scores, backprops
def get_states(pbeams, gbeams, beam_map, nr_update):
2017-08-12 19:47:45 +00:00
seen = {}
2017-08-12 22:15:16 +00:00
states = []
2017-08-12 19:47:45 +00:00
p_indices = []
g_indices = []
cdef Beam pbeam, gbeam
2017-08-13 23:02:05 +00:00
assert len(pbeams) == len(gbeams)
2017-08-12 22:15:16 +00:00
for eg_id, (pbeam, gbeam) in enumerate(zip(pbeams, gbeams)):
2017-08-12 19:47:45 +00:00
p_indices.append([])
2017-08-13 23:02:05 +00:00
g_indices.append([])
if pbeam.loss > 0 and pbeam.min_score > gbeam.score:
continue
for i in range(pbeam.size):
state = <StateClass>pbeam.at(i)
if not state.is_final():
key = tuple([eg_id] + pbeam.histories[i])
seen[key] = len(states)
p_indices[-1].append(len(states))
2017-08-13 23:02:05 +00:00
states.append(state)
2017-08-12 19:47:45 +00:00
beam_map.update(seen)
for i in range(gbeam.size):
state = <StateClass>gbeam.at(i)
if not state.is_final():
key = tuple([eg_id] + gbeam.histories[i])
if key in seen:
g_indices[-1].append(seen[key])
else:
g_indices[-1].append(len(states))
beam_map[key] = len(states)
2017-08-13 23:02:05 +00:00
states.append(state)
p_idx = [numpy.asarray(idx, dtype='i') for idx in p_indices]
g_idx = [numpy.asarray(idx, dtype='i') for idx in g_indices]
return states, p_idx, g_idx
2017-08-12 19:47:45 +00:00
2017-08-12 22:15:16 +00:00
def get_gradient(nr_class, beam_maps, histories, losses):
2017-08-12 19:47:45 +00:00
"""
The global model assigns a loss to each parse. The beam scores
are additive, so the same gradient is applied to each action
in the history. This gives the gradient of a single *action*
for a beam state -- so we have "the gradient of loss for taking
action i given history H."
2017-08-12 22:15:16 +00:00
Histories: Each hitory is a list of actions
Each candidate has a history
Each beam has multiple candidates
Each batch has multiple beams
So history is list of lists of lists of ints
2017-08-12 19:47:45 +00:00
"""
2017-08-12 22:15:16 +00:00
nr_step = len(beam_maps)
grads = []
for beam_map in beam_maps:
2017-08-13 23:02:05 +00:00
if beam_map:
grads.append(numpy.zeros((max(beam_map.values())+1, nr_class), dtype='f'))
assert len(histories) == len(losses)
2017-08-12 22:15:16 +00:00
for eg_id, hists in enumerate(histories):
for loss, hist in zip(losses[eg_id], hists):
key = tuple([eg_id])
for j, clas in enumerate(hist):
2017-08-13 23:02:05 +00:00
i = beam_maps[j][key]
2017-08-12 23:21:54 +00:00
# In step j, at state i action clas
# resulted in loss
2017-08-13 23:02:05 +00:00
grads[j][i, clas] += loss / len(histories)
2017-08-12 22:15:16 +00:00
key = key + tuple([clas])
2017-08-12 19:47:45 +00:00
return grads