spaCy/spacy/tests/parser/test_nn_beam.py

88 lines
1.7 KiB
Python
Raw Normal View History

2017-08-18 20:27:42 +00:00
from __future__ import unicode_literals
import pytest
import numpy
from thinc.api import layerize
from ...vocab import Vocab
from ...syntax.arc_eager import ArcEager
from ...tokens import Doc
from ...gold import GoldParse
from ...syntax._beam_utils import ParserBeam, update_beam
from ...syntax.stateclass import StateClass
@pytest.fixture
def vocab():
return Vocab()
@pytest.fixture
def moves(vocab):
aeager = ArcEager(vocab.strings, {})
aeager.add_action(2, 'nsubj')
aeager.add_action(3, 'dobj')
aeager.add_action(2, 'aux')
return aeager
@pytest.fixture
def docs(vocab):
return [Doc(vocab, words=['Rats', 'bite', 'things'])]
@pytest.fixture
def states(docs):
return [StateClass(doc) for doc in docs]
@pytest.fixture
def tokvecs(docs, vector_size):
output = []
for doc in docs:
vec = numpy.random.uniform(-0.1, 0.1, (len(doc), vector_size))
output.append(numpy.asarray(vec))
return output
@pytest.fixture
def golds(docs):
return [GoldParse(doc) for doc in docs]
@pytest.fixture
def batch_size(docs):
return len(docs)
@pytest.fixture
def beam_width():
return 4
@pytest.fixture
def vector_size():
return 6
@pytest.fixture
def beam(moves, states, golds, beam_width):
return ParserBeam(moves, states, golds, width=beam_width)
@pytest.fixture
def scores(moves, batch_size, beam_width):
return [
numpy.asarray(
numpy.random.uniform(-0.1, 0.1, (batch_size, moves.n_moves)),
dtype='f')
for _ in range(batch_size)]
def test_create_beam(beam):
pass
def test_beam_advance(beam, scores):
beam.advance(scores)
def test_beam_advance_too_few_scores(beam, scores):
with pytest.raises(IndexError):
beam.advance(scores[:-1])