spaCy/spacy/ml/tb_framework.py

87 lines
2.8 KiB
Python
Raw Normal View History

Adapt parser and NER for transformers (#5449) * Draft layer for BILUO actions * Fixes to biluo layer * WIP on BILUO layer * Add tests for BILUO layer * Format * Fix transitions * Update test * Link in the simple_ner * Update BILUO tagger * Update __init__ * Import simple_ner * Update test * Import * Add files * Add config * Fix label passing for BILUO and tagger * Fix label handling for simple_ner component * Update simple NER test * Update config * Hack train script * Update BILUO layer * Fix SimpleNER component * Update train_from_config * Add biluo_to_iob helper * Add IOB layer * Add IOBTagger model * Update biluo layer * Update SimpleNER tagger * Update BILUO * Read random seed in train-from-config * Update use of normal_init * Fix normalization of gradient in SimpleNER * Update IOBTagger * Remove print * Tweak masking in BILUO * Add dropout in SimpleNER * Update thinc * Tidy up simple_ner * Fix biluo model * Unhack train-from-config * Update setup.cfg and requirements * Add tb_framework.py for parser model * Try to avoid memory leak in BILUO * Move ParserModel into spacy.ml, avoid need for subclass. * Use updated parser model * Remove incorrect call to model.initializre in PrecomputableAffine * Update parser model * Avoid divide by zero in tagger * Add extra dropout layer in tagger * Refine minibatch_by_words function to avoid oom * Fix parser model after refactor * Try to avoid div-by-zero in SimpleNER * Fix infinite loop in minibatch_by_words * Use SequenceCategoricalCrossentropy in Tagger * Fix parser model when hidden layer * Remove extra dropout from tagger * Add extra nan check in tagger * Fix thinc version * Update tests and imports * Fix test * Update test * Update tests * Fix tests * Fix test Co-authored-by: Ines Montani <ines@ines.io>
2020-05-18 20:23:33 +00:00
from thinc.api import Model, noop, use_ops, Linear
from ..syntax._parser_model import ParserStepModel
def TransitionModel(tok2vec, lower, upper, unseen_classes=set()):
"""Set up a stepwise transition-based model"""
if upper is None:
has_upper = False
upper = noop()
else:
has_upper = True
# don't define nO for this object, because we can't dynamically change it
return Model(
name="parser_model",
forward=forward,
dims={"nI": tok2vec.get_dim("nI") if tok2vec.has_dim("nI") else None},
layers=[tok2vec, lower, upper],
refs={"tok2vec": tok2vec, "lower": lower, "upper": upper},
init=init,
attrs={
"has_upper": has_upper,
"unseen_classes": set(unseen_classes),
"resize_output": resize_output
}
)
def forward(model, X, is_train):
step_model = ParserStepModel(
X,
model.layers,
unseen_classes=model.attrs["unseen_classes"],
train=is_train,
has_upper=model.attrs["has_upper"]
)
return step_model, step_model.finish_steps
def init(model, X=None, Y=None):
2020-05-21 17:26:29 +00:00
tok2vec = model.get_ref("tok2vec").initialize(X=X)
lower = model.get_ref("lower").initialize()
Adapt parser and NER for transformers (#5449) * Draft layer for BILUO actions * Fixes to biluo layer * WIP on BILUO layer * Add tests for BILUO layer * Format * Fix transitions * Update test * Link in the simple_ner * Update BILUO tagger * Update __init__ * Import simple_ner * Update test * Import * Add files * Add config * Fix label passing for BILUO and tagger * Fix label handling for simple_ner component * Update simple NER test * Update config * Hack train script * Update BILUO layer * Fix SimpleNER component * Update train_from_config * Add biluo_to_iob helper * Add IOB layer * Add IOBTagger model * Update biluo layer * Update SimpleNER tagger * Update BILUO * Read random seed in train-from-config * Update use of normal_init * Fix normalization of gradient in SimpleNER * Update IOBTagger * Remove print * Tweak masking in BILUO * Add dropout in SimpleNER * Update thinc * Tidy up simple_ner * Fix biluo model * Unhack train-from-config * Update setup.cfg and requirements * Add tb_framework.py for parser model * Try to avoid memory leak in BILUO * Move ParserModel into spacy.ml, avoid need for subclass. * Use updated parser model * Remove incorrect call to model.initializre in PrecomputableAffine * Update parser model * Avoid divide by zero in tagger * Add extra dropout layer in tagger * Refine minibatch_by_words function to avoid oom * Fix parser model after refactor * Try to avoid div-by-zero in SimpleNER * Fix infinite loop in minibatch_by_words * Use SequenceCategoricalCrossentropy in Tagger * Fix parser model when hidden layer * Remove extra dropout from tagger * Add extra nan check in tagger * Fix thinc version * Update tests and imports * Fix test * Update test * Update tests * Fix tests * Fix test Co-authored-by: Ines Montani <ines@ines.io>
2020-05-18 20:23:33 +00:00
if model.attrs["has_upper"]:
statevecs = model.ops.alloc2f(2, lower.get_dim("nO"))
model.get_ref("upper").initialize(X=statevecs)
def resize_output(model, new_nO):
tok2vec = model.get_ref("tok2vec")
lower = model.get_ref("lower")
upper = model.get_ref("upper")
if not model.attrs["has_upper"]:
if lower.has_dim("nO") is None:
lower.set_dim("nO", new_nO)
return
elif upper.has_dim("nO") is None:
upper.set_dim("nO", new_nO)
return
elif new_nO == upper.get_dim("nO"):
return
smaller = upper
nI = None
if smaller.has_dim("nI"):
nI = smaller.get_dim("nI")
with use_ops('numpy'):
larger = Linear(nO=new_nO, nI=nI)
larger.init = smaller.init
# it could be that the model is not initialized yet, then skip this bit
if nI:
larger_W = larger.ops.alloc2f(new_nO, nI)
larger_b = larger.ops.alloc1f(new_nO)
smaller_W = smaller.get_param("W")
smaller_b = smaller.get_param("b")
# Weights are stored in (nr_out, nr_in) format, so we're basically
# just adding rows here.
if smaller.has_dim("nO"):
larger_W[:smaller.get_dim("nO")] = smaller_W
larger_b[:smaller.get_dim("nO")] = smaller_b
for i in range(smaller.get_dim("nO"), new_nO):
model.attrs["unseen_classes"].add(i)
larger.set_param("W", larger_W)
larger.set_param("b", larger_b)
model._layers[-1] = larger
model.set_ref("upper", larger)
return model