spaCy/spacy/training/initialize.py

205 lines
8.6 KiB
Python
Raw Normal View History

2020-09-28 19:17:10 +00:00
from typing import Union, Dict, Optional, Any, List
2020-09-28 13:09:59 +00:00
from thinc.api import Config, fix_random_seed, set_gpu_allocator
from thinc.api import ConfigValidationError
from pathlib import Path
2020-09-28 19:17:10 +00:00
from wasabi import Printer
2020-09-28 13:09:59 +00:00
import srsly
from .loop import create_before_to_disk_callback
from ..language import Language
from ..lookups import Lookups
from ..errors import Errors
from ..schemas import ConfigSchemaTraining, ConfigSchemaInit, ConfigSchemaPretrain
from ..util import registry, load_model_from_config, resolve_dot_names
2020-09-28 19:17:10 +00:00
from ..util import load_model, ensure_path, OOV_RANK, DEFAULT_OOV_PROB
2020-09-28 13:09:59 +00:00
2020-09-28 19:17:10 +00:00
def init_nlp(config: Config, *, use_gpu: int = -1, silent: bool = True) -> Language:
msg = Printer(no_print=silent)
2020-09-28 13:09:59 +00:00
raw_config = config
config = raw_config.interpolate()
if config["training"]["seed"] is not None:
fix_random_seed(config["training"]["seed"])
allocator = config["training"]["gpu_allocator"]
if use_gpu >= 0 and allocator:
set_gpu_allocator(allocator)
# Use original config here before it's resolved to functions
sourced_components = get_sourced_components(config)
nlp = load_model_from_config(raw_config, auto_fill=True)
2020-09-28 19:17:10 +00:00
msg.good("Set up nlp object from config")
2020-09-28 13:09:59 +00:00
config = nlp.config.interpolate()
# Resolve all training-relevant sections using the filled nlp config
T = registry.resolve(config["training"], schema=ConfigSchemaTraining)
dot_names = [T["train_corpus"], T["dev_corpus"]]
train_corpus, dev_corpus = resolve_dot_names(config, dot_names)
I = registry.resolve(config["initialize"], schema=ConfigSchemaInit)
V = I["vocab"]
2020-09-28 19:17:10 +00:00
init_vocab(
nlp, data=V["data"], lookups=V["lookups"], vectors=V["vectors"], silent=silent
)
2020-09-28 13:09:59 +00:00
optimizer = T["optimizer"]
before_to_disk = create_before_to_disk_callback(T["before_to_disk"])
# Components that shouldn't be updated during training
frozen_components = T["frozen_components"]
# Sourced components that require resume_training
resume_components = [p for p in sourced_components if p not in frozen_components]
2020-09-28 19:17:10 +00:00
msg.info(f"Pipeline: {nlp.pipe_names}")
2020-09-28 13:09:59 +00:00
if resume_components:
with nlp.select_pipes(enable=resume_components):
2020-09-28 19:17:10 +00:00
msg.info(f"Resuming training for: {resume_components}")
2020-09-28 13:09:59 +00:00
nlp.resume_training(sgd=optimizer)
with nlp.select_pipes(disable=[*frozen_components, *resume_components]):
nlp.begin_training(lambda: train_corpus(nlp), sgd=optimizer)
2020-09-28 19:17:10 +00:00
msg.good(f"Initialized pipeline components")
2020-09-28 13:09:59 +00:00
# Verify the config after calling 'begin_training' to ensure labels
# are properly initialized
verify_config(nlp)
if "pretraining" in config and config["pretraining"]:
P = registry.resolve(config["pretraining"], schema=ConfigSchemaPretrain)
2020-09-28 19:17:10 +00:00
loaded = add_tok2vec_weights(nlp, P, V)
2020-09-28 13:09:59 +00:00
if loaded and P["component"]:
2020-09-28 19:17:10 +00:00
msg.good(f"Loaded pretrained weights into component '{P['component']}'")
2020-09-28 13:09:59 +00:00
nlp = before_to_disk(nlp)
return nlp
def must_reinitialize(train_config: Config, init_config: Config) -> bool:
# TODO: do this better and more fine-grained
return train_config.interpolate().to_str() == init_config.interpolate().to_str()
def init_vocab(
nlp: Language,
*,
data: Optional[Path] = None,
lookups: Optional[Lookups] = None,
vectors: Optional[str] = None,
2020-09-28 19:17:10 +00:00
silent: bool = True,
2020-09-28 13:09:59 +00:00
) -> Language:
2020-09-28 19:17:10 +00:00
msg = Printer(no_print=silent)
2020-09-28 13:09:59 +00:00
if lookups:
nlp.vocab.lookups = lookups
2020-09-28 19:17:10 +00:00
msg.good(f"Added vocab lookups: {', '.join(lookups.tables)}")
2020-09-28 13:09:59 +00:00
data_path = ensure_path(data)
if data_path is not None:
lex_attrs = srsly.read_jsonl(data_path)
for lexeme in nlp.vocab:
lexeme.rank = OOV_RANK
for attrs in lex_attrs:
if "settings" in attrs:
continue
lexeme = nlp.vocab[attrs["orth"]]
lexeme.set_attrs(**attrs)
if len(nlp.vocab):
oov_prob = min(lex.prob for lex in nlp.vocab) - 1
else:
oov_prob = DEFAULT_OOV_PROB
nlp.vocab.cfg.update({"oov_prob": oov_prob})
2020-09-28 19:17:10 +00:00
msg.good(f"Added {len(nlp.vocab)} lexical entries to the vocab")
msg.good("Created vocabulary")
2020-09-28 13:09:59 +00:00
if vectors is not None:
load_vectors_into_model(nlp, vectors)
2020-09-28 19:17:10 +00:00
msg.good(f"Added vectors: {vectors}")
2020-09-28 13:09:59 +00:00
def load_vectors_into_model(
nlp: "Language", name: Union[str, Path], *, add_strings: bool = True
) -> None:
"""Load word vectors from an installed model or path into a model instance."""
try:
vectors_nlp = load_model(name)
except ConfigValidationError as e:
title = f"Config validation error for vectors {name}"
desc = (
"This typically means that there's a problem in the config.cfg included "
"with the packaged vectors. Make sure that the vectors package you're "
"loading is compatible with the current version of spaCy."
)
err = ConfigValidationError.from_error(config=None, title=title, desc=desc)
raise err from None
nlp.vocab.vectors = vectors_nlp.vocab.vectors
if add_strings:
# I guess we should add the strings from the vectors_nlp model?
# E.g. if someone does a similarity query, they might expect the strings.
for key in nlp.vocab.vectors.key2row:
if key in vectors_nlp.vocab.strings:
nlp.vocab.strings.add(vectors_nlp.vocab.strings[key])
def add_tok2vec_weights(
nlp: Language, pretrain_config: Dict[str, Any], vocab_config: Dict[str, Any]
) -> bool:
# Load pretrained tok2vec weights - cf. CLI command 'pretrain'
P = pretrain_config
V = vocab_config
weights_data = None
init_tok2vec = ensure_path(V["init_tok2vec"])
if init_tok2vec is not None:
if P["objective"].get("type") == "vectors" and not V["vectors"]:
2020-09-28 19:17:10 +00:00
err = 'need initialize.vocab.vectors if pretraining.objective.type is "vectors"'
errors = [{"loc": ["initialize", "vocab"], "msg": err}]
2020-09-28 13:09:59 +00:00
raise ConfigValidationError(config=nlp.config, errors=errors)
if not init_tok2vec.exists():
err = f"can't find pretrained tok2vec: {init_tok2vec}"
errors = [{"loc": ["initialize", "vectors", "init_tok2vec"], "msg": err}]
raise ConfigValidationError(config=nlp.config, errors=errors)
with init_tok2vec.open("rb") as file_:
weights_data = file_.read()
if weights_data is not None:
tok2vec_component = P["component"]
if tok2vec_component is None:
desc = (
f"To use pretrained tok2vec weights, [pretraining.component] "
f"needs to specify the component that should load them."
)
err = "component can't be null"
errors = [{"loc": ["pretraining", "component"], "msg": err}]
raise ConfigValidationError(
config=nlp.config["pretraining"], errors=errors, desc=desc
)
layer = nlp.get_pipe(tok2vec_component).model
if P["layer"]:
layer = layer.get_ref(P["layer"])
layer.from_bytes(weights_data)
return True
return False
def verify_config(nlp: Language) -> None:
"""Perform additional checks based on the config, loaded nlp object and training data."""
# TODO: maybe we should validate based on the actual components, the list
# in config["nlp"]["pipeline"] instead?
for pipe_config in nlp.config["components"].values():
# We can't assume that the component name == the factory
factory = pipe_config["factory"]
if factory == "textcat":
verify_textcat_config(nlp, pipe_config)
def verify_textcat_config(nlp: Language, pipe_config: Dict[str, Any]) -> None:
# if 'positive_label' is provided: double check whether it's in the data and
# the task is binary
if pipe_config.get("positive_label"):
textcat_labels = nlp.get_pipe("textcat").labels
pos_label = pipe_config.get("positive_label")
if pos_label not in textcat_labels:
raise ValueError(
Errors.E920.format(pos_label=pos_label, labels=textcat_labels)
)
if len(list(textcat_labels)) != 2:
raise ValueError(
Errors.E919.format(pos_label=pos_label, labels=textcat_labels)
)
def get_sourced_components(config: Union[Dict[str, Any], Config]) -> List[str]:
"""RETURNS (List[str]): All sourced components in the original config,
e.g. {"source": "en_core_web_sm"}. If the config contains a key
"factory", we assume it refers to a component factory.
"""
return [
name
for name, cfg in config.get("components", {}).items()
if "factory" not in cfg and "source" in cfg
]