spaCy/spacy/training/loggers.py

179 lines
6.5 KiB
Python
Raw Normal View History

from typing import TYPE_CHECKING, Dict, Any, Tuple, Callable, List, Optional, IO
2020-10-03 14:31:58 +00:00
from wasabi import Printer
import tqdm
import sys
from ..util import registry
2020-08-28 11:55:32 +00:00
from .. import util
from ..errors import Errors
2020-10-03 14:31:58 +00:00
if TYPE_CHECKING:
from ..language import Language # noqa: F401
2020-10-11 10:55:46 +00:00
def setup_table(
*, cols: List[str], widths: List[int], max_width: int = 13
) -> Tuple[List[str], List[int], List[str]]:
final_cols = []
final_widths = []
for col, width in zip(cols, widths):
if len(col) > max_width:
col = col[: max_width - 3] + "..." # shorten column if too long
final_cols.append(col.upper())
final_widths.append(max(len(col), width))
return final_cols, final_widths, ["r" for _ in final_widths]
@registry.loggers("spacy.ConsoleLogger.v1")
2020-10-03 14:31:58 +00:00
def console_logger(progress_bar: bool = False):
def setup_printer(
2020-10-03 14:31:58 +00:00
nlp: "Language", stdout: IO = sys.stdout, stderr: IO = sys.stderr
) -> Tuple[Callable[[Optional[Dict[str, Any]]], None], Callable[[], None]]:
2020-10-11 10:55:46 +00:00
write = lambda text: stdout.write(f"{text}\n")
2020-10-03 14:31:58 +00:00
msg = Printer(no_print=True)
2020-10-05 15:43:42 +00:00
# ensure that only trainable components are logged
logged_pipes = [
name
for name, proc in nlp.pipeline
if hasattr(proc, "is_trainable") and proc.is_trainable
2020-10-05 15:43:42 +00:00
]
eval_frequency = nlp.config["training"]["eval_frequency"]
2020-09-24 09:04:35 +00:00
score_weights = nlp.config["training"]["score_weights"]
score_cols = [col for col, value in score_weights.items() if value is not None]
loss_cols = [f"Loss {pipe}" for pipe in logged_pipes]
2020-10-11 10:55:46 +00:00
spacing = 2
table_header, table_widths, table_aligns = setup_table(
cols=["E", "#"] + loss_cols + score_cols + ["Score"],
widths=[3, 6] + [8 for _ in loss_cols] + [6 for _ in score_cols] + [6],
)
write(msg.row(table_header, widths=table_widths, spacing=spacing))
write(msg.row(["-" * width for width in table_widths], spacing=spacing))
progress = None
2020-10-03 14:31:58 +00:00
def log_step(info: Optional[Dict[str, Any]]) -> None:
nonlocal progress
if info is None:
# If we don't have a new checkpoint, just return.
if progress is not None:
progress.update(1)
2020-10-03 14:31:58 +00:00
return
losses = [
"{0:.2f}".format(float(info["losses"][pipe_name]))
2020-10-05 15:43:42 +00:00
for pipe_name in logged_pipes
]
2020-09-13 15:39:31 +00:00
scores = []
for col in score_cols:
2020-09-24 09:04:35 +00:00
score = info["other_scores"].get(col, 0.0)
try:
score = float(score)
except TypeError:
err = Errors.E916.format(name=col, score_type=type(score))
raise ValueError(err) from None
if col != "speed":
score *= 100
scores.append("{0:.2f}".format(score))
data = (
[info["epoch"], info["step"]]
+ losses
+ scores
+ ["{0:.2f}".format(float(info["score"]))]
)
if progress is not None:
progress.close()
2020-10-11 10:55:46 +00:00
write(
msg.row(data, widths=table_widths, aligns=table_aligns, spacing=spacing)
)
if progress_bar:
# Set disable=None, so that it disables on non-TTY
progress = tqdm.tqdm(
2020-10-03 14:31:58 +00:00
total=eval_frequency, disable=None, leave=False, file=stderr
)
progress.set_description(f"Epoch {info['epoch']+1}")
2020-10-03 14:31:58 +00:00
def finalize() -> None:
pass
return log_step, finalize
return setup_printer
@registry.loggers("spacy.WandbLogger.v2")
def wandb_logger(
project_name: str,
remove_config_values: List[str] = [],
model_log_interval: Optional[int] = None,
log_dataset_dir: Optional[str] = None,
):
2021-02-26 17:00:39 +00:00
try:
import wandb
# test that these are available
from wandb import init, log, join # noqa: F401
2021-02-26 17:00:39 +00:00
except ImportError:
raise ImportError(Errors.E880)
console = console_logger(progress_bar=False)
def setup_logger(
2020-10-03 14:31:58 +00:00
nlp: "Language", stdout: IO = sys.stdout, stderr: IO = sys.stderr
) -> Tuple[Callable[[Dict[str, Any]], None], Callable[[], None]]:
config = nlp.config.interpolate()
2020-08-28 11:55:32 +00:00
config_dot = util.dict_to_dot(config)
2020-08-28 12:06:23 +00:00
for field in remove_config_values:
2020-08-28 11:55:32 +00:00
del config_dot[field]
config = util.dot_to_dict(config_dot)
run = wandb.init(project=project_name, config=config, reinit=True)
console_log_step, console_finalize = console(nlp, stdout, stderr)
def log_dir_artifact(
path: str,
name: str,
type: str,
metadata: Optional[Dict[str, Any]] = {},
aliases: Optional[List[str]] = [],
):
dataset_artifact = wandb.Artifact(name, type=type, metadata=metadata)
dataset_artifact.add_dir(path, name=name)
wandb.log_artifact(dataset_artifact, aliases=aliases)
if log_dataset_dir:
log_dir_artifact(path=log_dataset_dir, name="dataset", type="dataset")
def log_step(info: Optional[Dict[str, Any]]):
console_log_step(info)
if info is not None:
score = info["score"]
other_scores = info["other_scores"]
losses = info["losses"]
wandb.log({"score": score})
if losses:
wandb.log({f"loss_{k}": v for k, v in losses.items()})
if isinstance(other_scores, dict):
wandb.log(other_scores)
if model_log_interval and info.get("output_path"):
if info["step"] % model_log_interval == 0 and info["step"] != 0:
log_dir_artifact(
path=info["output_path"],
name="pipeline_" + run.id,
type="checkpoint",
metadata=info,
aliases=[
f"epoch {info['epoch']} step {info['step']}",
"latest",
"best"
if info["score"] == max(info["checkpoints"])[0]
else "",
],
)
2020-10-03 14:31:58 +00:00
def finalize() -> None:
console_finalize()
wandb.join()
return log_step, finalize
return setup_logger