spaCy/website/docs/api/tokenizer.md

193 lines
9.1 KiB
Markdown
Raw Normal View History

---
title: Tokenizer
teaser: Segment text into words, punctuations marks etc.
tag: class
source: spacy/tokenizer.pyx
---
Segment text, and create `Doc` objects with the discovered segment boundaries.
## Tokenizer.\_\_init\_\_ {#init tag="method"}
Create a `Tokenizer`, to create `Doc` objects given unicode text.
> #### Example
>
> ```python
> # Construction 1
> from spacy.tokenizer import Tokenizer
> tokenizer = Tokenizer(nlp.vocab)
>
> # Construction 2
> from spacy.lang.en import English
> tokenizer = English().Defaults.create_tokenizer(nlp)
> ```
| Name | Type | Description |
| ---------------- | ----------- | ----------------------------------------------------------------------------------- |
| `vocab` | `Vocab` | A storage container for lexical types. |
| `rules` | dict | Exceptions and special-cases for the tokenizer. |
| `prefix_search` | callable | A function matching the signature of `re.compile(string).search` to match prefixes. |
| `suffix_search` | callable | A function matching the signature of `re.compile(string).search` to match suffixes. |
| `infix_finditer` | callable | A function matching the signature of `re.compile(string).finditer` to find infixes. |
| `token_match` | callable | A boolean function matching strings to be recognized as tokens. |
| **RETURNS** | `Tokenizer` | The newly constructed object. |
## Tokenizer.\_\_call\_\_ {#call tag="method"}
Tokenize a string.
> #### Example
>
> ```python
> tokens = tokenizer(u"This is a sentence")
> assert len(tokens) == 4
> ```
| Name | Type | Description |
| ----------- | ------- | --------------------------------------- |
| `string` | unicode | The string to tokenize. |
| **RETURNS** | `Doc` | A container for linguistic annotations. |
## Tokenizer.pipe {#pipe tag="method"}
Tokenize a stream of texts.
> #### Example
>
> ```python
> texts = [u"One document.", u"...", u"Lots of documents"]
> for doc in tokenizer.pipe(texts, batch_size=50):
> pass
> ```
2019-02-17 21:25:42 +00:00
| Name | Type | Description |
| ------------ | ----- | -------------------------------------------------------- |
| `texts` | - | A sequence of unicode texts. |
| `batch_size` | int | The number of texts to accumulate in an internal buffer. |
| **YIELDS** | `Doc` | A sequence of Doc objects, in order. |
## Tokenizer.find_infix {#find_infix tag="method"}
Find internal split points of the string.
| Name | Type | Description |
| ----------- | ------- | -------------------------------------------------------------------------------------------------------------------------------------------------- |
| `string` | unicode | The string to split. |
| **RETURNS** | list | A list of `re.MatchObject` objects that have `.start()` and `.end()` methods, denoting the placement of internal segment separators, e.g. hyphens. |
## Tokenizer.find_prefix {#find_prefix tag="method"}
Find the length of a prefix that should be segmented from the string, or `None`
if no prefix rules match.
| Name | Type | Description |
| ----------- | ------- | ------------------------------------------------------ |
| `string` | unicode | The string to segment. |
| **RETURNS** | int | The length of the prefix if present, otherwise `None`. |
## Tokenizer.find_suffix {#find_suffix tag="method"}
Find the length of a suffix that should be segmented from the string, or `None`
if no suffix rules match.
| Name | Type | Description |
| ----------- | ------------ | ------------------------------------------------------ |
| `string` | unicode | The string to segment. |
| **RETURNS** | int / `None` | The length of the suffix if present, otherwise `None`. |
## Tokenizer.add_special_case {#add_special_case tag="method"}
Add a special-case tokenization rule. This mechanism is also used to add custom
tokenizer exceptions to the language data. See the usage guide on
[adding languages](/usage/adding-languages#tokenizer-exceptions) for more
details and examples.
> #### Example
>
> ```python
> from spacy.attrs import ORTH, LEMMA
2019-02-21 13:22:06 +00:00
> case = [{ORTH: "do"}, {ORTH: "n't", LEMMA: "not"}]
> tokenizer.add_special_case("don't", case)
> ```
| Name | Type | Description |
| ------------- | -------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `string` | unicode | The string to specially tokenize. |
| `token_attrs` | iterable | A sequence of dicts, where each dict describes a token and its attributes. The `ORTH` fields of the attributes must exactly match the string when they are concatenated. |
## Tokenizer.to_disk {#to_disk tag="method"}
Serialize the tokenizer to disk.
> #### Example
>
> ```python
> tokenizer = Tokenizer(nlp.vocab)
> tokenizer.to_disk("/path/to/tokenizer")
> ```
| Name | Type | Description |
| ------ | ---------------- | --------------------------------------------------------------------------------------------------------------------- |
| `path` | unicode / `Path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
## Tokenizer.from_disk {#from_disk tag="method"}
Load the tokenizer from disk. Modifies the object in place and returns it.
> #### Example
>
> ```python
> tokenizer = Tokenizer(nlp.vocab)
> tokenizer.from_disk("/path/to/tokenizer")
> ```
| Name | Type | Description |
| ----------- | ---------------- | -------------------------------------------------------------------------- |
| `path` | unicode / `Path` | A path to a directory. Paths may be either strings or `Path`-like objects. |
| **RETURNS** | `Tokenizer` | The modified `Tokenizer` object. |
## Tokenizer.to_bytes {#to_bytes tag="method"}
> #### Example
>
> ```python
> tokenizer = tokenizer(nlp.vocab)
> tokenizer_bytes = tokenizer.to_bytes()
> ```
Serialize the tokenizer to a bytestring.
| Name | Type | Description |
| ----------- | ----- | -------------------------------------------------- |
| `**exclude` | - | Named attributes to prevent from being serialized. |
| **RETURNS** | bytes | The serialized form of the `Tokenizer` object. |
## Tokenizer.from_bytes {#from_bytes tag="method"}
Load the tokenizer from a bytestring. Modifies the object in place and returns
it.
> #### Example
>
> ```python
> tokenizer_bytes = tokenizer.to_bytes()
> tokenizer = Tokenizer(nlp.vocab)
> tokenizer.from_bytes(tokenizer_bytes)
> ```
| Name | Type | Description |
| ------------ | ----------- | ---------------------------------------------- |
| `bytes_data` | bytes | The data to load from. |
| `**exclude` | - | Named attributes to prevent from being loaded. |
| **RETURNS** | `Tokenizer` | The `Tokenizer` object. |
## Attributes {#attributes}
| Name | Type | Description |
| ---------------- | ------- | -------------------------------------------------------------------------------------------------------------------------- |
| `vocab` | `Vocab` | The vocab object of the parent `Doc`. |
| `prefix_search` | - | A function to find segment boundaries from the start of a string. Returns the length of the segment, or `None`. |
| `suffix_search` | - | A function to find segment boundaries from the end of a string. Returns the length of the segment, or `None`. |
| `infix_finditer` | - | A function to find internal segment separators, e.g. hyphens. Returns a (possibly empty) list of `re.MatchObject` objects. |