spaCy/website/setup/quickstart_training_gpu.jinja

140 lines
3.0 KiB
Plaintext
Raw Normal View History

2020-08-13 13:21:42 +00:00
{# Template for "CPU" configs. The transformer will use a different template. #}
# This is an auto-generated partial config for training a model.
# To use it for training, auto-fill it with all default values.
# python -m spacy init config config.cfg --base base_config.cfg
[paths]
train = ""
dev = ""
[nlp]
lang = "{{ lang }}"
pipeline = {{ pipeline|safe }}
vectors = null
tokenizer = {"@tokenizers": "spacy.Tokenizer.v1"}
[components]
[components.transformer]
factory = "transformer"
[components.transformer.model]
@architectures = "spacy-transformers.TransformerModel.v1"
{#- name = {{ transformer_info["name"] }} #}
name = "roberta-base"
tokenizer_config = {"use_fast": true}
[components.transformer.model.get_spans]
@span_getters = "strided_spans.v1"
window = 128
stride = 96
{% if "tagger" in components %}
[components.tagger]
factory = "tagger"
[components.tagger.model]
@architectures = "spacy.Tagger.v1"
nO = null
[components.tagger.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
[components.ner.model.tok2vec.pooling]
@layers = "reduce_mean.v1"
{%- endif %}
{% if "parser" in components -%}
[components.parser]
factory = "parser"
[components.parser.model]
@architectures = "spacy.TransitionBasedParser.v1"
nr_feature_tokens = 8
hidden_width = 128
maxout_pieces = 3
use_upper = false
nO = null
[components.parser.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
[components.ner.model.tok2vec.pooling]
@layers = "reduce_mean.v1"
{%- endif %}
{% if "ner" in components -%}
[components.ner]
factory = "ner"
[components.ner.model]
@architectures = "spacy.TransitionBasedParser.v1"
nr_feature_tokens = 3
hidden_width = 64
maxout_pieces = 2
use_upper = false
nO = null
[components.ner.model.tok2vec]
@architectures = "spacy-transformers.TransformerListener.v1"
grad_factor = 1.0
[components.parser.model.tok2vec.pooling]
@layers = "reduce_mean.v1"
{% endif -%}
[training]
{#- accumulate_gradient = {{ transformer_info["size_factor"] }} #}
accumulate_gradient = 3
[training.optimizer]
@optimizers = "Adam.v1"
beta1 = 0.9
beta2 = 0.999
L2_is_weight_decay = true
L2 = 0.01
grad_clip = 1.0
use_averages = false
eps = 1e-8
[training.optimizer.learn_rate]
@schedules = "warmup_linear.v1"
warmup_steps = 250
total_steps = 20000
initial_rate = 5e-5
[training.train_corpus]
@readers = "spacy.Corpus.v1"
path = ${paths:train}
gold_preproc = false
max_length = 500
limit = 0
[training.dev_corpus]
@readers = "spacy.Corpus.v1"
path = ${paths:dev}
gold_preproc = false
max_length = 0
limit = 0
[training.batcher]
@batchers = "batch_by_padded.v1"
discard_oversize = true
batch_size = 2000
[training.score_weights]
{%- if "tagger" in components %}
tag_acc = {{ (1.0 / components|length)|round(2) }}
{%- endif -%}
{%- if "parser" in components %}
dep_uas = 0.0
dep_las = {{ (1.0 / components|length)|round(2) }}
sents_f = 0.0
{%- endif %}
{%- if "ner" in components %}
ents_f = {{ (1.0 / components|length)|round(2) }}
ents_p = 0.0
ents_r = 0.0
{%- endif -%}