mirror of https://github.com/explosion/spaCy.git
158 lines
5.3 KiB
Python
158 lines
5.3 KiB
Python
|
#!/usr/bin/env python
|
||
|
# coding: utf-8
|
||
|
"""Using the parser to recognise your own semantics spaCy's parser component
|
||
|
can be used to trained to predict any type of tree structure over your input
|
||
|
text. You can also predict trees over whole documents or chat logs, with
|
||
|
connections between the sentence-roots used to annotate discourse structure.
|
||
|
|
||
|
In this example, we'll build a message parser for a common "chat intent":
|
||
|
finding local businesses. Our message semantics will have the following types
|
||
|
of relations: INTENT, PLACE, QUALITY, ATTRIBUTE, TIME, LOCATION. For example:
|
||
|
|
||
|
"show me the best hotel in berlin"
|
||
|
('show', 'ROOT', 'show')
|
||
|
('best', 'QUALITY', 'hotel') --> hotel with QUALITY best
|
||
|
('hotel', 'PLACE', 'show') --> show PLACE hotel
|
||
|
('berlin', 'LOCATION', 'hotel') --> hotel with LOCATION berlin
|
||
|
"""
|
||
|
from __future__ import unicode_literals, print_function
|
||
|
|
||
|
import plac
|
||
|
import random
|
||
|
import spacy
|
||
|
from spacy.gold import GoldParse
|
||
|
from spacy.tokens import Doc
|
||
|
from pathlib import Path
|
||
|
|
||
|
|
||
|
# training data: words, head and dependency labels
|
||
|
# for no relation, we simply chose an arbitrary dependency label, e.g. '-'
|
||
|
TRAIN_DATA = [
|
||
|
(
|
||
|
['find', 'a', 'cafe', 'with', 'great', 'wifi'],
|
||
|
[0, 2, 0, 5, 5, 2], # index of token head
|
||
|
['ROOT', '-', 'PLACE', '-', 'QUALITY', 'ATTRIBUTE']
|
||
|
),
|
||
|
(
|
||
|
['find', 'a', 'hotel', 'near', 'the', 'beach'],
|
||
|
[0, 2, 0, 5, 5, 2],
|
||
|
['ROOT', '-', 'PLACE', 'QUALITY', '-', 'ATTRIBUTE']
|
||
|
),
|
||
|
(
|
||
|
['find', 'me', 'the', 'closest', 'gym', 'that', "'s", 'open', 'late'],
|
||
|
[0, 0, 4, 4, 0, 6, 4, 6, 6],
|
||
|
['ROOT', '-', '-', 'QUALITY', 'PLACE', '-', '-', 'ATTRIBUTE', 'TIME']
|
||
|
),
|
||
|
(
|
||
|
['show', 'me', 'the', 'cheapest', 'store', 'that', 'sells', 'flowers'],
|
||
|
[0, 0, 4, 4, 0, 4, 4, 4], # attach "flowers" to store!
|
||
|
['ROOT', '-', '-', 'QUALITY', 'PLACE', '-', '-', 'PRODUCT']
|
||
|
),
|
||
|
(
|
||
|
['find', 'a', 'nice', 'restaurant', 'in', 'london'],
|
||
|
[0, 3, 3, 0, 3, 3],
|
||
|
['ROOT', '-', 'QUALITY', 'PLACE', '-', 'LOCATION']
|
||
|
),
|
||
|
(
|
||
|
['show', 'me', 'the', 'coolest', 'hostel', 'in', 'berlin'],
|
||
|
[0, 0, 4, 4, 0, 4, 4],
|
||
|
['ROOT', '-', '-', 'QUALITY', 'PLACE', '-', 'LOCATION']
|
||
|
),
|
||
|
(
|
||
|
['find', 'a', 'good', 'italian', 'restaurant', 'near', 'work'],
|
||
|
[0, 4, 4, 4, 0, 4, 5],
|
||
|
['ROOT', '-', 'QUALITY', 'ATTRIBUTE', 'PLACE', 'ATTRIBUTE', 'LOCATION']
|
||
|
)
|
||
|
]
|
||
|
|
||
|
|
||
|
@plac.annotations(
|
||
|
model=("Model name. Defaults to blank 'en' model.", "option", "m", str),
|
||
|
output_dir=("Optional output directory", "option", "o", Path),
|
||
|
n_iter=("Number of training iterations", "option", "n", int))
|
||
|
def main(model=None, output_dir=None, n_iter=100):
|
||
|
"""Load the model, set up the pipeline and train the parser."""
|
||
|
if model is not None:
|
||
|
nlp = spacy.load(model) # load existing spaCy model
|
||
|
print("Loaded model '%s'" % model)
|
||
|
else:
|
||
|
nlp = spacy.blank('en') # create blank Language class
|
||
|
print("Created blank 'en' model")
|
||
|
|
||
|
# add the parser to the pipeline if it doesn't exist
|
||
|
# nlp.create_pipe works for built-ins that are registered with spaCy
|
||
|
if 'parser' not in nlp.pipe_names:
|
||
|
parser = nlp.create_pipe('parser')
|
||
|
nlp.add_pipe(parser, first=True)
|
||
|
# otherwise, get it, so we can add labels to it
|
||
|
else:
|
||
|
parser = nlp.get_pipe('parser')
|
||
|
|
||
|
for _, _, deps in TRAIN_DATA:
|
||
|
for dep in deps:
|
||
|
parser.add_label(dep)
|
||
|
|
||
|
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'parser']
|
||
|
with nlp.disable_pipes(*other_pipes): # only train parser
|
||
|
optimizer = nlp.begin_training(lambda: [])
|
||
|
for itn in range(n_iter):
|
||
|
random.shuffle(TRAIN_DATA)
|
||
|
losses = {}
|
||
|
for words, heads, deps in TRAIN_DATA:
|
||
|
doc = Doc(nlp.vocab, words=words)
|
||
|
gold = GoldParse(doc, heads=heads, deps=deps)
|
||
|
nlp.update([doc], [gold], sgd=optimizer, losses=losses)
|
||
|
print(losses)
|
||
|
|
||
|
# test the trained model
|
||
|
test_model(nlp)
|
||
|
|
||
|
# save model to output directory
|
||
|
if output_dir is not None:
|
||
|
output_dir = Path(output_dir)
|
||
|
if not output_dir.exists():
|
||
|
output_dir.mkdir()
|
||
|
nlp.to_disk(output_dir)
|
||
|
print("Saved model to", output_dir)
|
||
|
|
||
|
# test the saved model
|
||
|
print("Loading from", output_dir)
|
||
|
nlp2 = spacy.load(output_dir)
|
||
|
test_model(nlp2)
|
||
|
|
||
|
|
||
|
def test_model(nlp):
|
||
|
texts = ["find a hotel with good wifi",
|
||
|
"find me the cheapest gym near work",
|
||
|
"show me the best hotel in berlin"]
|
||
|
docs = nlp.pipe(texts)
|
||
|
for doc in docs:
|
||
|
print(doc.text)
|
||
|
print([(t.text, t.dep_, t.head.text) for t in doc if t.dep_ != '-'])
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
plac.call(main)
|
||
|
|
||
|
# Expected output:
|
||
|
# find a hotel with good wifi
|
||
|
# [
|
||
|
# ('find', 'ROOT', 'find'),
|
||
|
# ('hotel', 'PLACE', 'find'),
|
||
|
# ('good', 'QUALITY', 'wifi'),
|
||
|
# ('wifi', 'ATTRIBUTE', 'hotel')
|
||
|
# ]
|
||
|
# find me the cheapest gym near work
|
||
|
# [
|
||
|
# ('find', 'ROOT', 'find'),
|
||
|
# ('cheapest', 'QUALITY', 'gym'),
|
||
|
# ('gym', 'PLACE', 'find')
|
||
|
# ]
|
||
|
# show me the best hotel in berlin
|
||
|
# [
|
||
|
# ('show', 'ROOT', 'show'),
|
||
|
# ('best', 'QUALITY', 'hotel'),
|
||
|
# ('hotel', 'PLACE', 'show'),
|
||
|
# ('berlin', 'LOCATION', 'hotel')
|
||
|
# ]
|