spaCy/spacy/ner/greedy_parser.pyx

140 lines
5.3 KiB
Cython
Raw Normal View History

from __future__ import division
from __future__ import unicode_literals
cimport cython
import random
import os
from os import path
import shutil
import json
from thinc.features cimport ConjFeat
from .context cimport fill_context
from .context cimport N_FIELDS
from .structs cimport Move, State
from .io_moves cimport fill_moves, transition, best_accepted
from .io_moves cimport set_accept_if_valid, set_accept_if_oracle
from .io_moves import get_n_moves
from ._state cimport init_state
from ._state cimport entity_is_open
from ._state cimport end_entity
from .annot cimport NERAnnotation
def setup_model_dir(entity_types, templates, model_dir):
if path.exists(model_dir):
shutil.rmtree(model_dir)
os.mkdir(model_dir)
config = {
'templates': templates,
'entity_types': entity_types,
}
with open(path.join(model_dir, 'config.json'), 'w') as file_:
json.dump(config, file_)
def train(train_sents, model_dir, nr_iter=10):
cdef Tokens tokens
cdef NERAnnotation gold_ner
parser = NERParser(model_dir)
for _ in range(nr_iter):
tp = 0
fp = 0
fn = 0
for i, (tokens, gold_ner) in enumerate(train_sents):
#print [tokens[i].string for i in range(tokens.length)]
test_ents = set(parser.train(tokens, gold_ner))
#print 'Test', test_ents
gold_ents = set(gold_ner.entities)
#print 'Gold', set(gold_ner.entities)
tp += len(gold_ents.intersection(test_ents))
fp += len(test_ents - gold_ents)
fn += len(gold_ents - test_ents)
p = tp / (tp + fp)
r = tp / (tp + fn)
f = 2 * ((p * r) / (p + r))
print 'P: %.3f' % p,
print 'R: %.3f' % r,
print 'F: %.3f' % f
random.shuffle(train_sents)
parser.model.end_training()
parser.model.dump(path.join(model_dir, 'model'))
cdef class NERParser:
def __init__(self, model_dir):
self.mem = Pool()
cfg = json.load(open(path.join(model_dir, 'config.json')))
templates = cfg['templates']
self.extractor = Extractor(templates, [ConjFeat] * len(templates))
self.entity_types = cfg['entity_types']
self.n_classes = get_n_moves(len(self.entity_types))
self._moves = <Move*>self.mem.alloc(self.n_classes, sizeof(Move))
fill_moves(self._moves, self.n_classes, self.entity_types)
self.model = LinearModel(self.n_classes)
if path.exists(path.join(model_dir, 'model')):
self.model.load(path.join(model_dir, 'model'))
self._context = <atom_t*>self.mem.alloc(N_FIELDS, sizeof(atom_t))
self._feats = <feat_t*>self.mem.alloc(self.extractor.n+1, sizeof(feat_t))
self._values = <weight_t*>self.mem.alloc(self.extractor.n+1, sizeof(weight_t))
self._scores = <weight_t*>self.mem.alloc(self.model.nr_class, sizeof(weight_t))
cpdef list train(self, Tokens tokens, NERAnnotation annot):
cdef Pool mem = Pool()
cdef State* s = init_state(mem, tokens.length)
cdef Move* guess
cdef Move* oracle_move
n_correct = 0
cdef int f = 0
while s.i < tokens.length:
fill_context(self._context, s, tokens)
self.extractor.extract(self._feats, self._values, self._context, NULL)
self.model.score(self._scores, self._feats, self._values)
2015-04-19 08:31:31 +00:00
set_accept_if_valid(self._moves, self.n_classes, s)
guess = best_accepted(self._moves, self._scores, self.n_classes)
assert guess.clas != 0
set_accept_if_oracle(self._moves, self.n_classes, s,
annot.starts, annot.ends, annot.labels)
oracle_move = best_accepted(self._moves, self._scores, self.n_classes)
assert oracle_move.clas != 0
if guess.clas == oracle_move.clas:
counts = {}
n_correct += 1
else:
counts = {guess.clas: {}, oracle_move.clas: {}}
self.extractor.count(counts[oracle_move.clas], self._feats, 1)
self.extractor.count(counts[guess.clas], self._feats, -1)
self.model.update(counts)
transition(s, guess)
tokens.ner[s.i-1] = s.tags[s.i-1]
if entity_is_open(s):
s.curr.label = annot.labels[s.curr.start]
end_entity(s)
entities = []
for i in range(s.j):
entities.append((s.ents[i].start, s.ents[i].end, s.ents[i].label))
return entities
cpdef list set_tags(self, Tokens tokens):
cdef Pool mem = Pool()
cdef State* s = init_state(mem, tokens.length)
cdef Move* move
while s.i < tokens.length:
fill_context(self._context, s, tokens)
self.extractor.extract(self._feats, self._values, self._context, NULL)
self.model.score(self._scores, self._feats, self._values)
set_accept_if_valid(self._moves, self.n_classes, s)
move = best_accepted(self._moves, self._scores, self.n_classes)
transition(s, move)
tokens.ner[s.i-1] = s.tags[s.i-1]
if entity_is_open(s):
s.curr.label = move.label
end_entity(s)
entities = []
for i in range(s.j):
entities.append((s.ents[i].start, s.ents[i].end, s.ents[i].label))
return entities