spaCy/spacy/tests/lang/ru/test_lemmatizer.py

72 lines
3.4 KiB
Python
Raw Normal View History

# coding: utf-8
from __future__ import unicode_literals
import pytest
from ....tokens.doc import Doc
@pytest.fixture
def ru_lemmatizer(RU):
return RU.Defaults.create_lemmatizer()
# @pytest.mark.models('ru')
# def test_doc_lemmatization(RU):
# doc = Doc(RU.vocab, words=['мама', 'мыла', 'раму'])
# doc[0].tag_ = 'NOUN__Animacy=Anim|Case=Nom|Gender=Fem|Number=Sing'
# doc[1].tag_ = 'VERB__Aspect=Imp|Gender=Fem|Mood=Ind|Number=Sing|Tense=Past|VerbForm=Fin|Voice=Act'
# doc[2].tag_ = 'NOUN__Animacy=Anim|Case=Acc|Gender=Fem|Number=Sing'
#
# lemmas = [token.lemma_ for token in doc]
# assert lemmas == ['мама', 'мыть', 'рама']
@pytest.mark.models('ru')
@pytest.mark.parametrize('text,lemmas', [('гвоздики', ['гвоздик', 'гвоздика']),
('люди', ['человек']),
('реки', ['река']),
('кольцо', ['кольцо']),
('пепперони', ['пепперони'])])
def test_ru_lemmatizer_noun_lemmas(ru_lemmatizer, text, lemmas):
assert sorted(ru_lemmatizer.noun(text)) == lemmas
@pytest.mark.models('ru')
@pytest.mark.parametrize('text,pos,morphology,lemma', [('рой', 'NOUN', None, 'рой'),
('рой', 'VERB', None, 'рыть'),
('клей', 'NOUN', None, 'клей'),
('клей', 'VERB', None, 'клеить'),
('три', 'NUM', None, 'три'),
('кос', 'NOUN', {'Number': 'Sing'}, 'кос'),
('кос', 'NOUN', {'Number': 'Plur'}, 'коса'),
('кос', 'ADJ', None, 'косой'),
('потом', 'NOUN', None, 'пот'),
('потом', 'ADV', None, 'потом')
])
def test_ru_lemmatizer_works_with_different_pos_homonyms(ru_lemmatizer, text, pos, morphology, lemma):
assert ru_lemmatizer(text, pos, morphology) == [lemma]
@pytest.mark.models('ru')
@pytest.mark.parametrize('text,morphology,lemma', [('гвоздики', {'Gender': 'Fem'}, 'гвоздика'),
('гвоздики', {'Gender': 'Masc'}, 'гвоздик'),
('вина', {'Gender': 'Fem'}, 'вина'),
('вина', {'Gender': 'Neut'}, 'вино')
])
def test_ru_lemmatizer_works_with_noun_homonyms(ru_lemmatizer, text, morphology, lemma):
assert ru_lemmatizer.noun(text, morphology) == [lemma]
# @pytest.mark.models('ru')
# def test_ru_lemmatizer_punct(ru_lemmatizer):
# assert ru_lemmatizer.punct('“') == ['"']
# assert ru_lemmatizer.punct('“') == ['"']
#
#
# @pytest.mark.models('ru')
# def test_ru_lemmatizer_lemma_assignment(RU):
# text = "А роза упала на лапу Азора."
# doc = RU.make_doc(text)
# RU.tagger(doc)
# assert all(t.lemma_ != '' for t in doc)