mirror of https://github.com/explosion/spaCy.git
63 lines
1.9 KiB
Python
63 lines
1.9 KiB
Python
|
#!/usr/bin/env python
|
|||
|
# coding: utf8
|
|||
|
"""
|
|||
|
A simple example of extracting relations between phrases and entities using
|
|||
|
spaCy's named entity recognizer and the dependency parse. Here, we extract
|
|||
|
money and currency values (entities labelled as MONEY) and then check the
|
|||
|
dependency tree to find the noun phrase they are referring to – for example:
|
|||
|
$9.4 million --> Net income.
|
|||
|
|
|||
|
Last updated for: spaCy 2.0.0a18
|
|||
|
"""
|
|||
|
from __future__ import unicode_literals, print_function
|
|||
|
|
|||
|
import plac
|
|||
|
import spacy
|
|||
|
|
|||
|
|
|||
|
TEXTS = [
|
|||
|
'Net income was $9.4 million compared to the prior year of $2.7 million.',
|
|||
|
'Revenue exceeded twelve billion dollars, with a loss of $1b.',
|
|||
|
]
|
|||
|
|
|||
|
|
|||
|
@plac.annotations(
|
|||
|
model=("Model to load (needs parser and NER)", "positional", None, str))
|
|||
|
def main(model='en_core_web_sm'):
|
|||
|
nlp = spacy.load(model)
|
|||
|
print("Loaded model '%s'" % model)
|
|||
|
print("Processing %d texts" % len(TEXTS))
|
|||
|
|
|||
|
for text in TEXTS:
|
|||
|
doc = nlp(text)
|
|||
|
relations = extract_currency_relations(doc)
|
|||
|
for r1, r2 in relations:
|
|||
|
print('{:<10}\t{}\t{}'.format(r1.text, r2.ent_type_, r2.text))
|
|||
|
|
|||
|
|
|||
|
def extract_currency_relations(doc):
|
|||
|
# merge entities and noun chunks into one token
|
|||
|
for span in [*list(doc.ents), *list(doc.noun_chunks)]:
|
|||
|
span.merge()
|
|||
|
|
|||
|
relations = []
|
|||
|
for money in filter(lambda w: w.ent_type_ == 'MONEY', doc):
|
|||
|
if money.dep_ in ('attr', 'dobj'):
|
|||
|
subject = [w for w in money.head.lefts if w.dep_ == 'nsubj']
|
|||
|
if subject:
|
|||
|
subject = subject[0]
|
|||
|
relations.append((subject, money))
|
|||
|
elif money.dep_ == 'pobj' and money.head.dep_ == 'prep':
|
|||
|
relations.append((money.head.head, money))
|
|||
|
return relations
|
|||
|
|
|||
|
|
|||
|
if __name__ == '__main__':
|
|||
|
plac.call(main)
|
|||
|
|
|||
|
# Expected output:
|
|||
|
# Net income MONEY $9.4 million
|
|||
|
# the prior year MONEY $2.7 million
|
|||
|
# Revenue MONEY twelve billion dollars
|
|||
|
# a loss MONEY 1b
|