spaCy/website/src/widgets/landing.js

318 lines
14 KiB
JavaScript
Raw Normal View History

import React from 'react'
import PropTypes from 'prop-types'
import { StaticQuery, graphql } from 'gatsby'
import {
LandingHeader,
LandingTitle,
LandingSubtitle,
LandingGrid,
LandingCard,
2019-03-18 15:24:52 +00:00
LandingCol,
LandingDemo,
LandingBannerGrid,
LandingBanner,
} from '../components/landing'
import { H2 } from '../components/typography'
2020-09-12 15:05:10 +00:00
import { InlineCode } from '../components/code'
2022-02-08 10:46:42 +00:00
import { Ul, Li } from '../components/list'
import Button from '../components/button'
import Link from '../components/link'
2020-05-21 18:45:33 +00:00
2020-09-12 15:05:10 +00:00
import QuickstartTraining from './quickstart-training'
import Project from './project'
2020-10-15 09:16:06 +00:00
import Features from './features'
2020-05-21 18:45:33 +00:00
import courseImage from '../../docs/images/course.jpg'
2020-09-12 15:05:10 +00:00
import prodigyImage from '../../docs/images/prodigy_overview.jpg'
import projectsImage from '../../docs/images/projects.png'
2022-02-08 10:46:42 +00:00
import tailoredPipelinesImage from '../../docs/images/spacy-tailored-pipelines_wide.png'
2020-09-12 15:05:10 +00:00
import Benchmarks from 'usage/_benchmarks-models.md'
function getCodeExample(nightly) {
return `# pip install -U ${nightly ? 'spacy-nightly --pre' : 'spacy'}
2019-03-22 18:02:15 +00:00
# python -m spacy download en_core_web_sm
import spacy
2020-09-08 08:33:48 +00:00
# Load English tokenizer, tagger, parser and NER
2019-03-22 18:02:15 +00:00
nlp = spacy.load("en_core_web_sm")
# Process whole documents
2019-03-22 18:02:15 +00:00
text = ("When Sebastian Thrun started working on self-driving cars at "
"Google in 2007, few people outside of the company took him "
"seriously. “I can tell you very senior CEOs of major American "
"car companies would shake my hand and turn away because I wasnt "
"worth talking to,” said Thrun, in an interview with Recode earlier "
"this week.")
doc = nlp(text)
2019-03-22 18:02:15 +00:00
# Analyze syntax
print("Noun phrases:", [chunk.text for chunk in doc.noun_chunks])
print("Verbs:", [token.lemma_ for token in doc if token.pos_ == "VERB"])
# Find named entities, phrases and concepts
for entity in doc.ents:
print(entity.text, entity.label_)
`
}
const Landing = ({ data }) => {
const { nightly, legacy } = data
const codeExample = getCodeExample(nightly)
return (
<>
<LandingHeader nightly={nightly} legacy={legacy}>
<LandingTitle>
Industrial-Strength
<br />
Natural Language
<br />
Processing
</LandingTitle>
<LandingSubtitle>in Python</LandingSubtitle>
</LandingHeader>
<LandingGrid blocks>
<LandingCard title="Get things done" url="/usage/spacy-101" button="Get started">
spaCy is designed to help you do real work to build real products, or gather
real insights. The library respects your time, and tries to avoid wasting it.
2020-09-12 15:05:10 +00:00
It's easy to install, and its API is simple and productive.
</LandingCard>
<LandingCard
title="Blazing fast"
url="/usage/facts-figures"
button="Facts &amp; Figures"
>
spaCy excels at large-scale information extraction tasks. It's written from the
2020-09-12 15:05:10 +00:00
ground up in carefully memory-managed Cython. If your application needs to
process entire web dumps, spaCy is the library you want to be using.
2019-04-19 13:23:08 +00:00
</LandingCard>
2020-09-12 15:05:10 +00:00
<LandingCard title="Awesome ecosystem" url="/usage/projects" button="Read more">
In the five years since its release, spaCy has become an industry standard with
a huge ecosystem. Choose from a variety of plugins, integrate with your machine
learning stack and build custom components and workflows.
</LandingCard>
</LandingGrid>
<LandingGrid>
<LandingDemo title="Edit the code &amp; try spaCy">{codeExample}</LandingDemo>
2019-03-18 15:24:52 +00:00
<LandingCol>
<H2>Features</H2>
2020-10-15 09:16:06 +00:00
<Features />
2019-03-18 15:24:52 +00:00
</LandingCol>
</LandingGrid>
2020-09-12 15:05:10 +00:00
<LandingBannerGrid>
<LandingBanner
2022-02-08 10:46:42 +00:00
to="https://explosion.ai/spacy-tailored-pipelines"
button="Learn more"
background="#E4F4F9"
color="#1e1935"
2020-09-12 15:05:10 +00:00
small
>
2022-02-08 10:46:42 +00:00
<Link to="https://explosion.ai/spacy-tailored-pipelines" hidden>
<img src={tailoredPipelinesImage} alt="spaCy Tailored Pipelines" />
</Link>
<strong>
Get a custom spaCy pipeline, tailor-made for your NLP problem by spaCy's
core developers.
</strong>
<br />
<br />
<Ul>
<Li emoji="🔥">
<strong>Streamlined.</strong> Nobody knows spaCy better than we do. Send
us your pipeline requirements and we'll be ready to start producing your
solution in no time at all.
</Li>
<Li emoji="🐿 ">
<strong>Production ready.</strong> spaCy pipelines are robust and easy
to deploy. You'll get a complete spaCy project folder which is ready to{' '}
<InlineCode>spacy project run</InlineCode>.
</Li>
<Li emoji="🔮">
<strong>Predictable.</strong> You'll know exactly what you're going to
get and what it's going to cost. We quote fees up-front, let you try
before you buy, and don't charge for over-runs at our end all the risk
is on us.
</Li>
<Li emoji="🛠">
<strong>Maintainable.</strong> spaCy is an industry standard, and we'll
deliver your pipeline with full code, data, tests and documentation, so
your team can retrain, update and extend the solution as your
requirements change.
</Li>
</Ul>
2020-09-12 15:05:10 +00:00
</LandingBanner>
<LandingBanner
title="Prodigy: Radically efficient machine teaching"
label="From the makers of spaCy"
to="https://prodi.gy"
button="Try it out"
background="#f6f6f6"
color="#000"
small
>
<Link to="https://prodi.gy" hidden>
{/** Update image */}
<img
src={prodigyImage}
alt="Prodigy: Radically efficient machine teaching"
/>
</Link>
<br />
<br />
Prodigy is an <strong>annotation tool</strong> so efficient that data scientists
can do the annotation themselves, enabling a new level of rapid iteration.
Whether you're working on entity recognition, intent detection or image
classification, Prodigy can help you <strong>train and evaluate</strong> your
models faster.
</LandingBanner>
</LandingBannerGrid>
<LandingGrid cols={2} style={{ gridTemplateColumns: '1fr calc(80ch + 14rem)' }}>
<LandingCol>
<H2>Reproducible training for custom pipelines</H2>
<p>
spaCy v3.0 introduces a comprehensive and extensible system for{' '}
<strong>configuring your training runs</strong>. Your configuration file
will describe every detail of your training run, with no hidden defaults,
making it easy to <strong>rerun your experiments</strong> and track changes.
You can use the quickstart widget or the{' '}
<Link to="/api/cli#init-config">
<InlineCode>init config</InlineCode>
</Link>{' '}
command to get started, or clone a project template for an end-to-end
workflow.
</p>
<p>
<Button to="/usage/training">Get started</Button>
</p>
</LandingCol>
<LandingCol>
<QuickstartTraining />
</LandingCol>
</LandingGrid>
<LandingGrid cols={2}>
<LandingCol>
<Link to="/usage/projects" hidden>
<img src={projectsImage} />
</Link>
<br />
<br />
<br />
2020-09-20 15:44:58 +00:00
<Project id="pipelines/tagger_parser_ud" title="Get started">
The easiest way to get started is to clone a project template and run it
 for example, this template for training a{' '}
<strong>part-of-speech tagger</strong> and{' '}
<strong>dependency parser</strong> on a Universal Dependencies treebank.
2020-09-12 15:05:10 +00:00
</Project>
</LandingCol>
<LandingCol>
<H2>End-to-end workflows from prototype to production</H2>
<p>
spaCy's new project system gives you a smooth path from prototype to
production. It lets you keep track of all those{' '}
<strong>data transformation</strong>, preprocessing and{' '}
<strong>training steps</strong>, so you can make sure your project is always
ready to hand over for automation. It features source asset download,
command execution, checksum verification, and caching with a variety of
backends and integrations.
</p>
<p>
<Button to="/usage/projects">Try it out</Button>
</p>
</LandingCol>
</LandingGrid>
2020-10-16 09:46:33 +00:00
<LandingBannerGrid>
2022-02-08 10:46:42 +00:00
<LandingBanner
label="New in v3.0"
title="Transformer-based pipelines, new training system, project templates &amp; more"
to="/usage/v3"
button="See what's new"
small
>
spaCy v3.0 features all new <strong>transformer-based pipelines</strong> that
bring spaCy's accuracy right up to the current <strong>state-of-the-art</strong>
. You can use any pretrained transformer to train your own pipelines, and even
share one transformer between multiple components with{' '}
<strong>multi-task learning</strong>. Training is now fully configurable and
extensible, and you can define your own custom models using{' '}
<strong>PyTorch</strong>, <strong>TensorFlow</strong> and other frameworks.
2020-10-16 09:46:33 +00:00
</LandingBanner>
<LandingBanner
2021-01-27 01:39:47 +00:00
to="https://course.spacy.io"
button="Start the course"
2020-10-16 09:46:33 +00:00
background="#f6f6f6"
2021-01-27 01:39:47 +00:00
color="#252a33"
2020-10-16 09:46:33 +00:00
small
>
2021-01-27 01:39:47 +00:00
<Link to="https://course.spacy.io" hidden>
2020-10-16 09:46:33 +00:00
<img
2021-01-27 01:39:47 +00:00
src={courseImage}
alt="Advanced NLP with spaCy: A free online course"
2020-10-16 09:46:33 +00:00
/>
</Link>
<br />
<br />
2021-01-27 01:39:47 +00:00
In this <strong>free and interactive online course</strong> youll learn how to
use spaCy to build advanced natural language understanding systems, using both
rule-based and machine learning approaches. It includes{' '}
<strong>55 exercises</strong> featuring videos, slide decks, multiple-choice
questions and interactive coding practice in the browser.
2020-10-16 09:46:33 +00:00
</LandingBanner>
</LandingBannerGrid>
2020-09-12 15:05:10 +00:00
<LandingGrid cols={2} style={{ gridTemplateColumns: '1fr 60%' }}>
2019-03-18 15:24:52 +00:00
<LandingCol>
<H2>Benchmarks</H2>
<p>
2020-09-12 15:05:10 +00:00
spaCy v3.0 introduces transformer-based pipelines that bring spaCy's
accuracy right up to the current <strong>state-of-the-art</strong>. You can
also use a CPU-optimized pipeline, which is less accurate but much cheaper
to run.
</p>
<p>
2020-09-23 20:02:31 +00:00
<Button to="/usage/facts-figures#benchmarks">More results</Button>
</p>
2019-03-18 15:24:52 +00:00
</LandingCol>
2019-03-18 15:24:52 +00:00
<LandingCol>
2020-09-12 15:05:10 +00:00
<Benchmarks />
2019-03-18 15:24:52 +00:00
</LandingCol>
</LandingGrid>
</>
)
}
Landing.propTypes = {
data: PropTypes.shape({
repo: PropTypes.string,
languages: PropTypes.arrayOf(
PropTypes.shape({
models: PropTypes.arrayOf(PropTypes.string),
})
),
}),
}
export default () => (
<StaticQuery query={landingQuery} render={({ site }) => <Landing data={site.siteMetadata} />} />
)
const landingQuery = graphql`
query LandingQuery {
site {
siteMetadata {
2020-07-01 11:03:04 +00:00
nightly
legacy
repo
}
}
}
`