spaCy/bin/get_freqs.py

107 lines
2.9 KiB
Python
Raw Normal View History

2015-07-14 00:31:32 +00:00
#!/usr/bin/env python
from __future__ import unicode_literals
import plac
import joblib
from os import path
import os
import bz2
import ujson
import codecs
from preshed.counter import PreshCounter
from joblib import Parallel, delayed
import spacy.en
from spacy.strings import StringStore
from spacy.en.attrs import ORTH
def iter_comments(loc):
with bz2.BZ2File(loc) as file_:
for line in file_:
yield ujson.loads(line)
def null_props(string):
return {
'flags': 0,
'length': len(string),
'orth': string,
'lower': string,
'norm': string,
'shape': string,
'prefix': string,
'suffix': string,
'cluster': 0,
'prob': -22,
'sentiment': 0
}
def count_freqs(input_loc, output_loc):
2015-07-25 19:13:41 +00:00
print output_loc
nlp = spacy.en.English(Parser=None, Tagger=None, Entity=None, load_vectors=False)
2015-07-14 00:31:32 +00:00
nlp.vocab.lexeme_props_getter = null_props
counts = PreshCounter()
tokenizer = nlp.tokenizer
for json_comment in iter_comments(input_loc):
doc = tokenizer(json_comment['body'])
doc.count_by(ORTH, counts=counts)
with codecs.open(output_loc, 'w', 'utf8') as file_:
for orth, freq in counts:
string = nlp.vocab.strings[orth]
file_.write('%d\t%s\n' % (freq, repr(string)))
def parallelize(func, iterator, n_jobs):
Parallel(n_jobs=n_jobs)(delayed(func)(*item) for item in iterator)
def merge_counts(locs, out_loc):
string_map = StringStore()
counts = PreshCounter()
for loc in locs:
with codecs.open(loc, 'r', 'utf8') as file_:
for line in file_:
freq, word = line.strip().split('\t', 1)
orth = string_map[word]
counts.inc(orth, int(freq))
with codecs.open(out_loc, 'w', 'utf8') as file_:
2015-07-22 13:43:06 +00:00
for orth, count in counts:
2015-07-14 00:31:32 +00:00
string = string_map[orth]
file_.write('%d\t%s\n' % (count, string))
@plac.annotations(
input_loc=("Location of input file list"),
2015-07-14 00:31:32 +00:00
freqs_dir=("Directory for frequency files"),
output_loc=("Location for output file"),
n_jobs=("Number of workers", "option", "n", int),
2015-07-22 13:43:06 +00:00
skip_existing=("Skip inputs where an output file exists", "flag", "s", bool),
2015-07-14 00:31:32 +00:00
)
2015-07-22 13:43:06 +00:00
def main(input_loc, freqs_dir, output_loc, n_jobs=2, skip_existing=False):
2015-07-14 00:31:32 +00:00
tasks = []
2015-07-22 13:43:06 +00:00
outputs = []
for input_path in open(input_loc):
input_path = input_path.strip()
2015-07-22 13:43:06 +00:00
if not input_path:
continue
filename = input_path.split('/')[-1]
2015-07-14 00:31:32 +00:00
output_path = path.join(freqs_dir, filename.replace('bz2', 'freq'))
2015-07-22 13:43:06 +00:00
outputs.append(output_path)
if not path.exists(output_path) or not skip_existing:
tasks.append((input_path, output_path))
2015-07-14 00:31:32 +00:00
2015-07-25 19:13:41 +00:00
if tasks:
parallelize(count_freqs, tasks, n_jobs)
2015-07-14 00:31:32 +00:00
2015-07-25 19:13:41 +00:00
print "Merge"
2015-07-22 13:43:06 +00:00
merge_counts(outputs, output_loc)
2015-07-14 00:31:32 +00:00
if __name__ == '__main__':
plac.call(main)