spaCy/spacy/ml/tok2vec.py

177 lines
5.7 KiB
Python
Raw Normal View History

from __future__ import unicode_literals
from thinc.api import chain, layerize, clone, concatenate, with_flatten, uniqued
from thinc.api import noop, with_square_sequences
from thinc.v2v import Maxout, Model
from thinc.i2v import HashEmbed, StaticVectors
from thinc.t2t import ExtractWindow
from thinc.misc import Residual, LayerNorm, FeatureExtracter
from ..util import make_layer, registry
from ._wire import concatenate_lists
@registry.architectures.register("spacy.Tok2Vec.v1")
def Tok2Vec(config):
doc2feats = make_layer(config["@doc2feats"])
embed = make_layer(config["@embed"])
encode = make_layer(config["@encode"])
field_size = getattr(encode, "receptive_field", 0)
tok2vec = chain(doc2feats, with_flatten(chain(embed, encode), pad=field_size))
tok2vec.cfg = config
tok2vec.nO = encode.nO
tok2vec.embed = embed
tok2vec.encode = encode
return tok2vec
@registry.architectures.register("spacy.Doc2Feats.v1")
def Doc2Feats(config):
columns = config["columns"]
return FeatureExtracter(columns)
@registry.architectures.register("spacy.MultiHashEmbed.v1")
def MultiHashEmbed(config):
# For backwards compatibility with models before the architecture registry,
# we have to be careful to get exactly the same model structure. One subtle
# trick is that when we define concatenation with the operator, the operator
# is actually binary associative. So when we write (a | b | c), we're actually
# getting concatenate(concatenate(a, b), c). That's why the implementation
# is a bit ugly here.
cols = config["columns"]
width = config["width"]
rows = config["rows"]
norm = HashEmbed(width, rows, column=cols.index("NORM"), name="embed_norm", seed=1)
if config["use_subwords"]:
2019-10-30 18:27:18 +00:00
prefix = HashEmbed(
width, rows // 2, column=cols.index("PREFIX"), name="embed_prefix", seed=2
2019-10-30 18:27:18 +00:00
)
suffix = HashEmbed(
width, rows // 2, column=cols.index("SUFFIX"), name="embed_suffix", seed=3
2019-10-30 18:27:18 +00:00
)
shape = HashEmbed(
width, rows // 2, column=cols.index("SHAPE"), name="embed_shape", seed=4
2019-10-30 18:27:18 +00:00
)
if config.get("@pretrained_vectors"):
glove = make_layer(config["@pretrained_vectors"])
mix = make_layer(config["@mix"])
with Model.define_operators({">>": chain, "|": concatenate}):
if config["use_subwords"] and config["@pretrained_vectors"]:
mix._layers[0].nI = width * 5
layer = uniqued(
(glove | norm | prefix | suffix | shape) >> mix,
2019-10-30 18:27:18 +00:00
column=cols.index("ORTH"),
)
elif config["use_subwords"]:
mix._layers[0].nI = width * 4
layer = uniqued(
2019-10-30 18:27:18 +00:00
(norm | prefix | suffix | shape) >> mix, column=cols.index("ORTH")
)
elif config["@pretrained_vectors"]:
mix._layers[0].nI = width * 2
layer = uniqued((glove | norm) >> mix, column=cols.index("ORTH"),)
else:
layer = norm
layer.cfg = config
return layer
@registry.architectures.register("spacy.CharacterEmbed.v1")
def CharacterEmbed(config):
from .. import _ml
2019-10-31 14:01:56 +00:00
width = config["width"]
chars = config["chars"]
chr_embed = _ml.CharacterEmbedModel(nM=width, nC=chars)
other_tables = make_layer(config["@embed_features"])
mix = make_layer(config["@mix"])
model = chain(concatenate_lists(chr_embed, other_tables), mix)
model.cfg = config
return model
@registry.architectures.register("spacy.MaxoutWindowEncoder.v1")
def MaxoutWindowEncoder(config):
nO = config["width"]
nW = config["window_size"]
nP = config["pieces"]
depth = config["depth"]
cnn = chain(
2019-10-28 11:43:55 +00:00
ExtractWindow(nW=nW), LayerNorm(Maxout(nO, nO * ((nW * 2) + 1), pieces=nP))
)
model = clone(Residual(cnn), depth)
model.nO = nO
model.receptive_field = nW * depth
return model
@registry.architectures.register("spacy.MishWindowEncoder.v1")
def MishWindowEncoder(config):
from thinc.v2v import Mish
nO = config["width"]
nW = config["window_size"]
depth = config["depth"]
cnn = chain(ExtractWindow(nW=nW), LayerNorm(Mish(nO, nO * ((nW * 2) + 1))))
model = clone(Residual(cnn), depth)
model.nO = nO
return model
@registry.architectures.register("spacy.PretrainedVectors.v1")
def PretrainedVectors(config):
return StaticVectors(config["vectors_name"], config["width"], config["column"])
@registry.architectures.register("spacy.TorchBiLSTMEncoder.v1")
def TorchBiLSTMEncoder(config):
import torch.nn
from thinc.extra.wrappers import PyTorchWrapperRNN
width = config["width"]
depth = config["depth"]
if depth == 0:
return layerize(noop())
return with_square_sequences(
PyTorchWrapperRNN(torch.nn.LSTM(width, width // 2, depth, bidirectional=True))
)
_EXAMPLE_CONFIG = {
"@doc2feats": {
"arch": "Doc2Feats",
"config": {"columns": ["ID", "NORM", "PREFIX", "SUFFIX", "SHAPE", "ORTH"]},
},
"@embed": {
"arch": "spacy.MultiHashEmbed.v1",
"config": {
"width": 96,
"rows": 2000,
"columns": ["ID", "NORM", "PREFIX", "SUFFIX", "SHAPE", "ORTH"],
"use_subwords": True,
"@pretrained_vectors": {
"arch": "TransformedStaticVectors",
"config": {
"vectors_name": "en_vectors_web_lg.vectors",
"width": 96,
"column": 0,
},
},
"@mix": {
"arch": "LayerNormalizedMaxout",
"config": {"width": 96, "pieces": 3},
},
},
},
"@encode": {
"arch": "MaxoutWindowEncode",
"config": {"width": 96, "window_size": 1, "depth": 4, "pieces": 3},
},
}