spaCy/spacy/tests/test_gold.py

113 lines
4.2 KiB
Python
Raw Normal View History

2017-01-12 22:39:18 +00:00
# coding: utf-8
from __future__ import unicode_literals
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-24 21:38:44 +00:00
from spacy.gold import biluo_tags_from_offsets, offsets_from_biluo_tags
from spacy.gold import spans_from_biluo_tags, GoldParse
Add textcat to train CLI (#4226) * Add doc.cats to spacy.gold at the paragraph level Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in the spacy JSON training format at the paragraph level. * `spacy.gold.docs_to_json()` writes `docs.cats` * `GoldCorpus` reads in cats in each `GoldParse` * Update instances of gold_tuples to handle cats Update iteration over gold_tuples / gold_parses to handle addition of cats at the paragraph level. * Add textcat to train CLI * Add textcat options to train CLI * Add textcat labels in `TextCategorizer.begin_training()` * Add textcat evaluation to `Scorer`: * For binary exclusive classes with provided label: F1 for label * For 2+ exclusive classes: F1 macro average * For multilabel (not exclusive): ROC AUC macro average (currently relying on sklearn) * Provide user info on textcat evaluation settings, potential incompatibilities * Provide pipeline to Scorer in `Language.evaluate` for textcat config * Customize train CLI output to include only metrics relevant to current pipeline * Add textcat evaluation to evaluate CLI * Fix handling of unset arguments and config params Fix handling of unset arguments and model confiug parameters in Scorer initialization. * Temporarily add sklearn requirement * Remove sklearn version number * Improve Scorer handling of models without textcats * Fixing Scorer handling of models without textcats * Update Scorer output for python 2.7 * Modify inf in Scorer for python 2.7 * Auto-format Also make small adjustments to make auto-formatting with black easier and produce nicer results * Move error message to Errors * Update documentation * Add cats to annotation JSON format [ci skip] * Fix tpl flag and docs [ci skip] * Switch to internal roc_auc_score Switch to internal `roc_auc_score()` adapted from scikit-learn. * Add AUCROCScore tests and improve errors/warnings * Add tests for AUCROCScore and roc_auc_score * Add missing error for only positive/negative values * Remove unnecessary warnings and errors * Make reduced roc_auc_score functions private Because most of the checks and warnings have been stripped for the internal functions and access is only intended through `ROCAUCScore`, make the functions for roc_auc_score adapted from scikit-learn private. * Check that data corresponds with multilabel flag Check that the training instances correspond with the multilabel flag, adding the multilabel flag if required. * Add textcat score to early stopping check * Add more checks to debug-data for textcat * Add example training data for textcat * Add more checks to textcat train CLI * Check configuration when extending base model * Fix typos * Update textcat example data * Provide licensing details and licenses for data * Remove two labels with no positive instances from jigsaw-toxic-comment data. Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 20:31:31 +00:00
from spacy.gold import GoldCorpus, docs_to_json
from spacy.lang.en import English
💫 Refactor test suite (#2568) ## Description Related issues: #2379 (should be fixed by separating model tests) * **total execution time down from > 300 seconds to under 60 seconds** 🎉 * removed all model-specific tests that could only really be run manually anyway – those will now live in a separate test suite in the [`spacy-models`](https://github.com/explosion/spacy-models) repository and are already integrated into our new model training infrastructure * changed all relative imports to absolute imports to prepare for moving the test suite from `/spacy/tests` to `/tests` (it'll now always test against the installed version) * merged old regression tests into collections, e.g. `test_issue1001-1500.py` (about 90% of the regression tests are very short anyways) * tidied up and rewrote existing tests wherever possible ### Todo - [ ] move tests to `/tests` and adjust CI commands accordingly - [x] move model test suite from internal repo to `spacy-models` - [x] ~~investigate why `pipeline/test_textcat.py` is flakey~~ - [x] review old regression tests (leftover files) and see if they can be merged, simplified or deleted - [ ] update documentation on how to run tests ### Types of change enhancement, tests ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
2018-07-24 21:38:44 +00:00
from spacy.tokens import Doc
Add textcat to train CLI (#4226) * Add doc.cats to spacy.gold at the paragraph level Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in the spacy JSON training format at the paragraph level. * `spacy.gold.docs_to_json()` writes `docs.cats` * `GoldCorpus` reads in cats in each `GoldParse` * Update instances of gold_tuples to handle cats Update iteration over gold_tuples / gold_parses to handle addition of cats at the paragraph level. * Add textcat to train CLI * Add textcat options to train CLI * Add textcat labels in `TextCategorizer.begin_training()` * Add textcat evaluation to `Scorer`: * For binary exclusive classes with provided label: F1 for label * For 2+ exclusive classes: F1 macro average * For multilabel (not exclusive): ROC AUC macro average (currently relying on sklearn) * Provide user info on textcat evaluation settings, potential incompatibilities * Provide pipeline to Scorer in `Language.evaluate` for textcat config * Customize train CLI output to include only metrics relevant to current pipeline * Add textcat evaluation to evaluate CLI * Fix handling of unset arguments and config params Fix handling of unset arguments and model confiug parameters in Scorer initialization. * Temporarily add sklearn requirement * Remove sklearn version number * Improve Scorer handling of models without textcats * Fixing Scorer handling of models without textcats * Update Scorer output for python 2.7 * Modify inf in Scorer for python 2.7 * Auto-format Also make small adjustments to make auto-formatting with black easier and produce nicer results * Move error message to Errors * Update documentation * Add cats to annotation JSON format [ci skip] * Fix tpl flag and docs [ci skip] * Switch to internal roc_auc_score Switch to internal `roc_auc_score()` adapted from scikit-learn. * Add AUCROCScore tests and improve errors/warnings * Add tests for AUCROCScore and roc_auc_score * Add missing error for only positive/negative values * Remove unnecessary warnings and errors * Make reduced roc_auc_score functions private Because most of the checks and warnings have been stripped for the internal functions and access is only intended through `ROCAUCScore`, make the functions for roc_auc_score adapted from scikit-learn private. * Check that data corresponds with multilabel flag Check that the training instances correspond with the multilabel flag, adding the multilabel flag if required. * Add textcat score to early stopping check * Add more checks to debug-data for textcat * Add example training data for textcat * Add more checks to textcat train CLI * Check configuration when extending base model * Fix typos * Update textcat example data * Provide licensing details and licenses for data * Remove two labels with no positive instances from jigsaw-toxic-comment data. Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 20:31:31 +00:00
from .util import make_tempdir
import pytest
Add textcat to train CLI (#4226) * Add doc.cats to spacy.gold at the paragraph level Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in the spacy JSON training format at the paragraph level. * `spacy.gold.docs_to_json()` writes `docs.cats` * `GoldCorpus` reads in cats in each `GoldParse` * Update instances of gold_tuples to handle cats Update iteration over gold_tuples / gold_parses to handle addition of cats at the paragraph level. * Add textcat to train CLI * Add textcat options to train CLI * Add textcat labels in `TextCategorizer.begin_training()` * Add textcat evaluation to `Scorer`: * For binary exclusive classes with provided label: F1 for label * For 2+ exclusive classes: F1 macro average * For multilabel (not exclusive): ROC AUC macro average (currently relying on sklearn) * Provide user info on textcat evaluation settings, potential incompatibilities * Provide pipeline to Scorer in `Language.evaluate` for textcat config * Customize train CLI output to include only metrics relevant to current pipeline * Add textcat evaluation to evaluate CLI * Fix handling of unset arguments and config params Fix handling of unset arguments and model confiug parameters in Scorer initialization. * Temporarily add sklearn requirement * Remove sklearn version number * Improve Scorer handling of models without textcats * Fixing Scorer handling of models without textcats * Update Scorer output for python 2.7 * Modify inf in Scorer for python 2.7 * Auto-format Also make small adjustments to make auto-formatting with black easier and produce nicer results * Move error message to Errors * Update documentation * Add cats to annotation JSON format [ci skip] * Fix tpl flag and docs [ci skip] * Switch to internal roc_auc_score Switch to internal `roc_auc_score()` adapted from scikit-learn. * Add AUCROCScore tests and improve errors/warnings * Add tests for AUCROCScore and roc_auc_score * Add missing error for only positive/negative values * Remove unnecessary warnings and errors * Make reduced roc_auc_score functions private Because most of the checks and warnings have been stripped for the internal functions and access is only intended through `ROCAUCScore`, make the functions for roc_auc_score adapted from scikit-learn private. * Check that data corresponds with multilabel flag Check that the training instances correspond with the multilabel flag, adding the multilabel flag if required. * Add textcat score to early stopping check * Add more checks to debug-data for textcat * Add example training data for textcat * Add more checks to textcat train CLI * Check configuration when extending base model * Fix typos * Update textcat example data * Provide licensing details and licenses for data * Remove two labels with no positive instances from jigsaw-toxic-comment data. Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 20:31:31 +00:00
import srsly
2019-08-18 13:09:16 +00:00
2017-01-12 22:39:18 +00:00
def test_gold_biluo_U(en_vocab):
words = ["I", "flew", "to", "London", "."]
spaces = [True, True, True, False, True]
doc = Doc(en_vocab, words=words, spaces=spaces)
entities = [(len("I flew to "), len("I flew to London"), "LOC")]
tags = biluo_tags_from_offsets(doc, entities)
assert tags == ["O", "O", "O", "U-LOC", "O"]
2017-01-12 22:39:18 +00:00
def test_gold_biluo_BL(en_vocab):
words = ["I", "flew", "to", "San", "Francisco", "."]
spaces = [True, True, True, True, False, True]
doc = Doc(en_vocab, words=words, spaces=spaces)
entities = [(len("I flew to "), len("I flew to San Francisco"), "LOC")]
tags = biluo_tags_from_offsets(doc, entities)
assert tags == ["O", "O", "O", "B-LOC", "L-LOC", "O"]
2017-01-12 22:39:18 +00:00
def test_gold_biluo_BIL(en_vocab):
words = ["I", "flew", "to", "San", "Francisco", "Valley", "."]
spaces = [True, True, True, True, True, False, True]
doc = Doc(en_vocab, words=words, spaces=spaces)
entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC")]
tags = biluo_tags_from_offsets(doc, entities)
assert tags == ["O", "O", "O", "B-LOC", "I-LOC", "L-LOC", "O"]
2019-08-18 13:09:16 +00:00
def test_gold_biluo_overlap(en_vocab):
words = ["I", "flew", "to", "San", "Francisco", "Valley", "."]
spaces = [True, True, True, True, True, False, True]
doc = Doc(en_vocab, words=words, spaces=spaces)
2019-08-18 13:09:16 +00:00
entities = [
(len("I flew to "), len("I flew to San Francisco Valley"), "LOC"),
(len("I flew to "), len("I flew to San Francisco"), "LOC"),
]
with pytest.raises(ValueError):
2019-08-18 13:09:16 +00:00
biluo_tags_from_offsets(doc, entities)
2017-01-12 22:39:18 +00:00
def test_gold_biluo_misalign(en_vocab):
words = ["I", "flew", "to", "San", "Francisco", "Valley."]
spaces = [True, True, True, True, True, False]
doc = Doc(en_vocab, words=words, spaces=spaces)
entities = [(len("I flew to "), len("I flew to San Francisco Valley"), "LOC")]
tags = biluo_tags_from_offsets(doc, entities)
assert tags == ["O", "O", "O", "-", "-", "-"]
def test_roundtrip_offsets_biluo_conversion(en_tokenizer):
text = "I flew to Silicon Valley via London."
biluo_tags = ["O", "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"]
offsets = [(10, 24, "LOC"), (29, 35, "GPE")]
doc = en_tokenizer(text)
biluo_tags_converted = biluo_tags_from_offsets(doc, offsets)
assert biluo_tags_converted == biluo_tags
offsets_converted = offsets_from_biluo_tags(doc, biluo_tags)
assert offsets_converted == offsets
def test_biluo_spans(en_tokenizer):
doc = en_tokenizer("I flew to Silicon Valley via London.")
biluo_tags = ["O", "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"]
spans = spans_from_biluo_tags(doc, biluo_tags)
assert len(spans) == 2
assert spans[0].text == "Silicon Valley"
assert spans[0].label_ == "LOC"
assert spans[1].text == "London"
assert spans[1].label_ == "GPE"
2019-02-27 13:24:55 +00:00
def test_gold_ner_missing_tags(en_tokenizer):
doc = en_tokenizer("I flew to Silicon Valley via London.")
biluo_tags = [None, "O", "O", "B-LOC", "L-LOC", "O", "U-GPE", "O"]
2019-02-27 13:24:55 +00:00
gold = GoldParse(doc, entities=biluo_tags) # noqa: F841
Add textcat to train CLI (#4226) * Add doc.cats to spacy.gold at the paragraph level Support `doc.cats` as `"cats": [{"label": string, "value": number}]` in the spacy JSON training format at the paragraph level. * `spacy.gold.docs_to_json()` writes `docs.cats` * `GoldCorpus` reads in cats in each `GoldParse` * Update instances of gold_tuples to handle cats Update iteration over gold_tuples / gold_parses to handle addition of cats at the paragraph level. * Add textcat to train CLI * Add textcat options to train CLI * Add textcat labels in `TextCategorizer.begin_training()` * Add textcat evaluation to `Scorer`: * For binary exclusive classes with provided label: F1 for label * For 2+ exclusive classes: F1 macro average * For multilabel (not exclusive): ROC AUC macro average (currently relying on sklearn) * Provide user info on textcat evaluation settings, potential incompatibilities * Provide pipeline to Scorer in `Language.evaluate` for textcat config * Customize train CLI output to include only metrics relevant to current pipeline * Add textcat evaluation to evaluate CLI * Fix handling of unset arguments and config params Fix handling of unset arguments and model confiug parameters in Scorer initialization. * Temporarily add sklearn requirement * Remove sklearn version number * Improve Scorer handling of models without textcats * Fixing Scorer handling of models without textcats * Update Scorer output for python 2.7 * Modify inf in Scorer for python 2.7 * Auto-format Also make small adjustments to make auto-formatting with black easier and produce nicer results * Move error message to Errors * Update documentation * Add cats to annotation JSON format [ci skip] * Fix tpl flag and docs [ci skip] * Switch to internal roc_auc_score Switch to internal `roc_auc_score()` adapted from scikit-learn. * Add AUCROCScore tests and improve errors/warnings * Add tests for AUCROCScore and roc_auc_score * Add missing error for only positive/negative values * Remove unnecessary warnings and errors * Make reduced roc_auc_score functions private Because most of the checks and warnings have been stripped for the internal functions and access is only intended through `ROCAUCScore`, make the functions for roc_auc_score adapted from scikit-learn private. * Check that data corresponds with multilabel flag Check that the training instances correspond with the multilabel flag, adding the multilabel flag if required. * Add textcat score to early stopping check * Add more checks to debug-data for textcat * Add example training data for textcat * Add more checks to textcat train CLI * Check configuration when extending base model * Fix typos * Update textcat example data * Provide licensing details and licenses for data * Remove two labels with no positive instances from jigsaw-toxic-comment data. Co-authored-by: Ines Montani <ines@ines.io>
2019-09-15 20:31:31 +00:00
def test_roundtrip_docs_to_json():
text = "I flew to Silicon Valley via London."
cats = {"TRAVEL": 1.0, "BAKING": 0.0}
nlp = English()
doc = nlp(text)
doc.cats = cats
doc[0].is_sent_start = True
for i in range(1, len(doc)):
doc[i].is_sent_start = False
with make_tempdir() as tmpdir:
json_file = tmpdir / "roundtrip.json"
srsly.write_json(json_file, [docs_to_json(doc)])
goldcorpus = GoldCorpus(str(json_file), str(json_file))
reloaded_doc, goldparse = next(goldcorpus.train_docs(nlp))
assert len(doc) == goldcorpus.count_train()
assert text == reloaded_doc.text
assert "TRAVEL" in goldparse.cats
assert "BAKING" in goldparse.cats
assert cats["TRAVEL"] == goldparse.cats["TRAVEL"]
assert cats["BAKING"] == goldparse.cats["BAKING"]