spaCy/spacy/lang/id/syntax_iterators.py

43 lines
1.5 KiB
Python
Raw Normal View History

2017-07-27 03:51:34 +00:00
# coding: utf8
from __future__ import unicode_literals
from ...symbols import NOUN, PROPN, PRON
def noun_chunks(obj):
"""
Detect base noun phrases from a dependency parse. Works on both Doc and Span.
"""
labels = ['nsubj', 'nsubj:pass', 'obj', 'iobj', 'ROOT', 'appos', 'nmod', 'nmod:poss']
doc = obj.doc # Ensure works on both Doc and Span.
np_deps = [doc.vocab.strings[label] for label in labels]
conj = doc.vocab.strings.add('conj')
np_label = doc.vocab.strings.add('NP')
seen = set()
for i, word in enumerate(obj):
if word.pos not in (NOUN, PROPN, PRON):
continue
# Prevent nested chunks from being produced
if word.i in seen:
continue
if word.dep in np_deps:
if any(w.i in seen for w in word.subtree):
continue
seen.update(j for j in range(word.left_edge.i, word.right_edge.i+1))
yield word.left_edge.i, word.right_edge.i+1, np_label
elif word.dep == conj:
head = word.head
while head.dep == conj and head.head.i < head.i:
head = head.head
# If the head is an NP, and we're coordinated to it, we're an NP
if head.dep in np_deps:
if any(w.i in seen for w in word.subtree):
continue
seen.update(j for j in range(word.left_edge.i, word.right_edge.i+1))
yield word.left_edge.i, word.right_edge.i+1, np_label
SYNTAX_ITERATORS = {
'noun_chunks': noun_chunks
}