2016-12-18 21:33:53 +00:00
|
|
|
|
# cython: infer_types=True
|
2023-09-12 06:49:41 +00:00
|
|
|
|
# cython: profile=False
|
2015-07-13 17:20:48 +00:00
|
|
|
|
# Compiler crashes on memory view coercion without this. Should report bug.
|
2015-07-13 18:20:58 +00:00
|
|
|
|
cimport numpy as np
|
2023-06-14 15:48:41 +00:00
|
|
|
|
|
2015-07-13 18:20:58 +00:00
|
|
|
|
np.import_array()
|
2019-03-08 10:42:26 +00:00
|
|
|
|
|
2023-06-14 15:48:41 +00:00
|
|
|
|
import warnings
|
|
|
|
|
|
2020-02-18 14:38:18 +00:00
|
|
|
|
from thinc.api import get_array_module
|
2015-07-13 18:20:58 +00:00
|
|
|
|
|
2023-06-14 15:48:41 +00:00
|
|
|
|
from ..attrs cimport (
|
|
|
|
|
IS_ALPHA,
|
|
|
|
|
IS_ASCII,
|
|
|
|
|
IS_BRACKET,
|
|
|
|
|
IS_CURRENCY,
|
|
|
|
|
IS_DIGIT,
|
|
|
|
|
IS_LEFT_PUNCT,
|
|
|
|
|
IS_LOWER,
|
|
|
|
|
IS_PUNCT,
|
|
|
|
|
IS_QUOTE,
|
|
|
|
|
IS_RIGHT_PUNCT,
|
|
|
|
|
IS_SPACE,
|
|
|
|
|
IS_STOP,
|
|
|
|
|
IS_TITLE,
|
|
|
|
|
IS_UPPER,
|
|
|
|
|
LIKE_EMAIL,
|
|
|
|
|
LIKE_NUM,
|
|
|
|
|
LIKE_URL,
|
2023-06-28 07:43:14 +00:00
|
|
|
|
ORTH,
|
2023-06-14 15:48:41 +00:00
|
|
|
|
)
|
2015-09-06 17:45:15 +00:00
|
|
|
|
from ..lexeme cimport Lexeme
|
2019-03-08 10:42:26 +00:00
|
|
|
|
from ..symbols cimport conj
|
2023-06-14 15:48:41 +00:00
|
|
|
|
from ..typedefs cimport hash_t
|
2020-09-16 18:32:38 +00:00
|
|
|
|
from .doc cimport set_children_from_heads
|
2023-06-14 15:48:41 +00:00
|
|
|
|
from .morphanalysis cimport MorphAnalysis
|
2019-03-08 10:42:26 +00:00
|
|
|
|
|
|
|
|
|
from .. import parts_of_speech
|
2022-01-20 12:19:38 +00:00
|
|
|
|
from ..attrs import IOB_STRINGS
|
2023-06-14 15:48:41 +00:00
|
|
|
|
from ..errors import Errors, Warnings
|
2018-04-03 16:30:17 +00:00
|
|
|
|
from .underscore import Underscore, get_ext_args
|
2015-08-23 18:49:18 +00:00
|
|
|
|
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
|
|
|
|
cdef class Token:
|
2017-10-27 13:41:45 +00:00
|
|
|
|
"""An individual token – i.e. a word, punctuation symbol, whitespace,
|
2019-03-08 10:42:26 +00:00
|
|
|
|
etc.
|
|
|
|
|
|
2021-01-30 09:09:38 +00:00
|
|
|
|
DOCS: https://spacy.io/api/token
|
2019-03-08 10:42:26 +00:00
|
|
|
|
"""
|
2017-10-07 16:56:01 +00:00
|
|
|
|
@classmethod
|
2018-04-03 16:30:17 +00:00
|
|
|
|
def set_extension(cls, name, **kwargs):
|
2019-03-08 10:42:26 +00:00
|
|
|
|
"""Define a custom attribute which becomes available as `Token._`.
|
|
|
|
|
|
2020-05-24 15:20:58 +00:00
|
|
|
|
name (str): Name of the attribute to set.
|
2019-03-08 10:42:26 +00:00
|
|
|
|
default: Optional default value of the attribute.
|
|
|
|
|
getter (callable): Optional getter function.
|
|
|
|
|
setter (callable): Optional setter function.
|
|
|
|
|
method (callable): Optional method for method extension.
|
|
|
|
|
force (bool): Force overwriting existing attribute.
|
|
|
|
|
|
2021-01-30 09:09:38 +00:00
|
|
|
|
DOCS: https://spacy.io/api/token#set_extension
|
|
|
|
|
USAGE: https://spacy.io/usage/processing-pipelines#custom-components-attributes
|
2019-03-08 10:42:26 +00:00
|
|
|
|
"""
|
|
|
|
|
if cls.has_extension(name) and not kwargs.get("force", False):
|
|
|
|
|
raise ValueError(Errors.E090.format(name=name, obj="Token"))
|
2018-04-03 16:30:17 +00:00
|
|
|
|
Underscore.token_extensions[name] = get_ext_args(**kwargs)
|
2017-10-07 16:56:01 +00:00
|
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
|
def get_extension(cls, name):
|
2019-03-08 10:42:26 +00:00
|
|
|
|
"""Look up a previously registered extension by name.
|
|
|
|
|
|
2020-05-24 15:20:58 +00:00
|
|
|
|
name (str): Name of the extension.
|
2019-03-08 10:42:26 +00:00
|
|
|
|
RETURNS (tuple): A `(default, method, getter, setter)` tuple.
|
|
|
|
|
|
2021-01-30 09:09:38 +00:00
|
|
|
|
DOCS: https://spacy.io/api/token#get_extension
|
2019-03-08 10:42:26 +00:00
|
|
|
|
"""
|
2018-04-29 13:48:19 +00:00
|
|
|
|
return Underscore.token_extensions.get(name)
|
2017-10-07 16:56:01 +00:00
|
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
|
def has_extension(cls, name):
|
2019-03-08 10:42:26 +00:00
|
|
|
|
"""Check whether an extension has been registered.
|
|
|
|
|
|
2020-05-24 15:20:58 +00:00
|
|
|
|
name (str): Name of the extension.
|
2019-03-08 10:42:26 +00:00
|
|
|
|
RETURNS (bool): Whether the extension has been registered.
|
|
|
|
|
|
2021-01-30 09:09:38 +00:00
|
|
|
|
DOCS: https://spacy.io/api/token#has_extension
|
2019-03-08 10:42:26 +00:00
|
|
|
|
"""
|
2018-04-29 13:48:19 +00:00
|
|
|
|
return name in Underscore.token_extensions
|
2017-10-07 16:56:01 +00:00
|
|
|
|
|
2018-04-28 21:33:09 +00:00
|
|
|
|
@classmethod
|
|
|
|
|
def remove_extension(cls, name):
|
2019-03-08 10:42:26 +00:00
|
|
|
|
"""Remove a previously registered extension.
|
|
|
|
|
|
2020-05-24 15:20:58 +00:00
|
|
|
|
name (str): Name of the extension.
|
2019-03-08 10:42:26 +00:00
|
|
|
|
RETURNS (tuple): A `(default, method, getter, setter)` tuple of the
|
|
|
|
|
removed extension.
|
|
|
|
|
|
2021-01-30 09:09:38 +00:00
|
|
|
|
DOCS: https://spacy.io/api/token#remove_extension
|
2019-03-08 10:42:26 +00:00
|
|
|
|
"""
|
2018-04-28 21:33:09 +00:00
|
|
|
|
if not cls.has_extension(name):
|
|
|
|
|
raise ValueError(Errors.E046.format(name=name))
|
|
|
|
|
return Underscore.token_extensions.pop(name)
|
|
|
|
|
|
2015-07-13 22:10:11 +00:00
|
|
|
|
def __cinit__(self, Vocab vocab, Doc doc, int offset):
|
2017-05-19 16:47:56 +00:00
|
|
|
|
"""Construct a `Token` object.
|
|
|
|
|
|
|
|
|
|
vocab (Vocab): A storage container for lexical types.
|
|
|
|
|
doc (Doc): The parent document.
|
|
|
|
|
offset (int): The index of the token within the document.
|
2019-03-08 10:42:26 +00:00
|
|
|
|
|
2021-01-30 09:09:38 +00:00
|
|
|
|
DOCS: https://spacy.io/api/token#init
|
2017-05-19 16:47:56 +00:00
|
|
|
|
"""
|
2015-07-13 17:20:48 +00:00
|
|
|
|
self.vocab = vocab
|
2015-07-13 22:10:11 +00:00
|
|
|
|
self.doc = doc
|
2015-11-03 13:15:14 +00:00
|
|
|
|
self.c = &self.doc.c[offset]
|
2015-07-13 22:10:11 +00:00
|
|
|
|
self.i = offset
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2017-01-16 12:27:57 +00:00
|
|
|
|
def __hash__(self):
|
|
|
|
|
return hash((self.doc, self.i))
|
|
|
|
|
|
2015-07-13 17:20:48 +00:00
|
|
|
|
def __len__(self):
|
2017-05-19 16:47:56 +00:00
|
|
|
|
"""The number of unicode characters in the token, i.e. `token.text`.
|
|
|
|
|
|
|
|
|
|
RETURNS (int): The number of unicode characters in the token.
|
2019-03-08 10:42:26 +00:00
|
|
|
|
|
2021-01-30 09:09:38 +00:00
|
|
|
|
DOCS: https://spacy.io/api/token#len
|
2017-04-15 11:05:15 +00:00
|
|
|
|
"""
|
2015-07-13 17:20:48 +00:00
|
|
|
|
return self.c.lex.length
|
|
|
|
|
|
|
|
|
|
def __unicode__(self):
|
2016-10-17 12:02:47 +00:00
|
|
|
|
return self.text
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2015-11-02 18:22:18 +00:00
|
|
|
|
def __bytes__(self):
|
2016-10-17 12:02:47 +00:00
|
|
|
|
return self.text.encode('utf8')
|
2015-11-02 18:22:18 +00:00
|
|
|
|
|
2015-07-24 01:49:30 +00:00
|
|
|
|
def __str__(self):
|
2019-12-22 00:53:56 +00:00
|
|
|
|
return self.__unicode__()
|
2015-07-24 01:49:30 +00:00
|
|
|
|
|
2015-10-21 11:11:46 +00:00
|
|
|
|
def __repr__(self):
|
2015-11-02 18:22:18 +00:00
|
|
|
|
return self.__str__()
|
2015-10-21 11:11:46 +00:00
|
|
|
|
|
2023-10-12 09:53:33 +00:00
|
|
|
|
def __richcmp__(self, object other, int op):
|
2017-01-09 18:30:31 +00:00
|
|
|
|
# http://cython.readthedocs.io/en/latest/src/userguide/special_methods.html
|
2018-01-15 14:51:25 +00:00
|
|
|
|
if other is None:
|
|
|
|
|
if op in (0, 1, 2):
|
|
|
|
|
return False
|
|
|
|
|
else:
|
|
|
|
|
return True
|
2023-10-12 09:53:33 +00:00
|
|
|
|
if not isinstance(other, Token):
|
|
|
|
|
return False
|
|
|
|
|
cdef Token other_token = other
|
2017-08-19 14:39:32 +00:00
|
|
|
|
cdef Doc my_doc = self.doc
|
2023-10-12 09:53:33 +00:00
|
|
|
|
cdef Doc other_doc = other_token.doc
|
2017-01-09 18:30:31 +00:00
|
|
|
|
my = self.idx
|
2023-10-12 09:53:33 +00:00
|
|
|
|
their = other_token.idx
|
2017-01-09 18:30:31 +00:00
|
|
|
|
if op == 0:
|
|
|
|
|
return my < their
|
|
|
|
|
elif op == 2:
|
2017-08-19 14:39:32 +00:00
|
|
|
|
if my_doc is other_doc:
|
|
|
|
|
return my == their
|
|
|
|
|
else:
|
|
|
|
|
return False
|
2017-01-09 18:30:31 +00:00
|
|
|
|
elif op == 4:
|
|
|
|
|
return my > their
|
|
|
|
|
elif op == 1:
|
|
|
|
|
return my <= their
|
|
|
|
|
elif op == 3:
|
2017-08-19 14:39:32 +00:00
|
|
|
|
if my_doc is other_doc:
|
|
|
|
|
return my != their
|
|
|
|
|
else:
|
|
|
|
|
return True
|
2017-01-09 18:30:31 +00:00
|
|
|
|
elif op == 5:
|
|
|
|
|
return my >= their
|
|
|
|
|
else:
|
2018-04-03 13:50:31 +00:00
|
|
|
|
raise ValueError(Errors.E041.format(op=op))
|
2017-01-09 18:30:31 +00:00
|
|
|
|
|
2019-02-13 10:27:04 +00:00
|
|
|
|
def __reduce__(self):
|
|
|
|
|
raise NotImplementedError(Errors.E111)
|
|
|
|
|
|
2017-10-07 16:56:01 +00:00
|
|
|
|
@property
|
|
|
|
|
def _(self):
|
2019-03-08 10:42:26 +00:00
|
|
|
|
"""Custom extension attributes registered via `set_extension`."""
|
2017-10-07 16:56:01 +00:00
|
|
|
|
return Underscore(Underscore.token_extensions, self,
|
|
|
|
|
start=self.idx, end=None)
|
|
|
|
|
|
2015-07-13 17:20:48 +00:00
|
|
|
|
cpdef bint check_flag(self, attr_id_t flag_id) except -1:
|
2017-05-19 16:47:56 +00:00
|
|
|
|
"""Check the value of a boolean flag.
|
|
|
|
|
|
|
|
|
|
flag_id (int): The ID of the flag attribute.
|
|
|
|
|
RETURNS (bool): Whether the flag is set.
|
2017-02-26 21:27:11 +00:00
|
|
|
|
|
2021-01-30 09:09:38 +00:00
|
|
|
|
DOCS: https://spacy.io/api/token#check_flag
|
2017-04-15 11:05:15 +00:00
|
|
|
|
"""
|
2015-09-15 03:06:18 +00:00
|
|
|
|
return Lexeme.c_check_flag(self.c.lex, flag_id)
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
|
|
|
|
def nbor(self, int i=1):
|
2017-05-19 16:47:56 +00:00
|
|
|
|
"""Get a neighboring token.
|
2016-11-01 11:25:36 +00:00
|
|
|
|
|
2017-05-19 16:47:56 +00:00
|
|
|
|
i (int): The relative position of the token to get. Defaults to 1.
|
|
|
|
|
RETURNS (Token): The token at position `self.doc[self.i+i]`.
|
2019-03-08 10:42:26 +00:00
|
|
|
|
|
2021-01-30 09:09:38 +00:00
|
|
|
|
DOCS: https://spacy.io/api/token#nbor
|
2017-04-15 11:05:15 +00:00
|
|
|
|
"""
|
2017-10-24 10:10:39 +00:00
|
|
|
|
if self.i+i < 0 or (self.i+i >= len(self.doc)):
|
2018-04-03 13:50:31 +00:00
|
|
|
|
raise IndexError(Errors.E042.format(i=self.i, j=i, length=len(self.doc)))
|
2015-07-13 22:10:11 +00:00
|
|
|
|
return self.doc[self.i+i]
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2015-09-14 07:49:58 +00:00
|
|
|
|
def similarity(self, other):
|
2017-05-19 16:47:56 +00:00
|
|
|
|
"""Make a semantic similarity estimate. The default estimate is cosine
|
|
|
|
|
similarity using an average of word vectors.
|
|
|
|
|
|
|
|
|
|
other (object): The object to compare with. By default, accepts `Doc`,
|
|
|
|
|
`Span`, `Token` and `Lexeme` objects.
|
|
|
|
|
RETURNS (float): A scalar similarity score. Higher is more similar.
|
2019-03-08 10:42:26 +00:00
|
|
|
|
|
2021-01-30 09:09:38 +00:00
|
|
|
|
DOCS: https://spacy.io/api/token#similarity
|
2017-04-15 11:05:15 +00:00
|
|
|
|
"""
|
2019-03-08 10:42:26 +00:00
|
|
|
|
if "similarity" in self.doc.user_token_hooks:
|
2019-07-27 13:26:01 +00:00
|
|
|
|
return self.doc.user_token_hooks["similarity"](self, other)
|
2023-06-28 07:43:14 +00:00
|
|
|
|
attr = getattr(self.doc.vocab.vectors, "attr", ORTH)
|
|
|
|
|
cdef Token this_token = self
|
|
|
|
|
cdef Token other_token
|
|
|
|
|
cdef Lexeme other_lex
|
|
|
|
|
if isinstance(other, Token):
|
|
|
|
|
other_token = other
|
|
|
|
|
if Token.get_struct_attr(this_token.c, attr) == Token.get_struct_attr(other_token.c, attr):
|
2018-01-15 15:29:48 +00:00
|
|
|
|
return 1.0
|
2023-06-28 07:43:14 +00:00
|
|
|
|
elif isinstance(other, Lexeme):
|
|
|
|
|
other_lex = other
|
|
|
|
|
if Token.get_struct_attr(this_token.c, attr) == Lexeme.get_struct_attr(other_lex.c, attr):
|
2018-01-15 15:29:48 +00:00
|
|
|
|
return 1.0
|
2018-05-20 23:22:38 +00:00
|
|
|
|
if self.vocab.vectors.n_keys == 0:
|
2020-04-28 11:37:37 +00:00
|
|
|
|
warnings.warn(Warnings.W007.format(obj="Token"))
|
2015-09-22 00:10:01 +00:00
|
|
|
|
if self.vector_norm == 0 or other.vector_norm == 0:
|
2022-06-28 17:50:47 +00:00
|
|
|
|
if not self.has_vector or not other.has_vector:
|
|
|
|
|
warnings.warn(Warnings.W008.format(obj="Token"))
|
2015-09-22 00:10:01 +00:00
|
|
|
|
return 0.0
|
2019-03-06 22:58:38 +00:00
|
|
|
|
vector = self.vector
|
2019-03-06 23:56:31 +00:00
|
|
|
|
xp = get_array_module(vector)
|
2022-01-20 10:40:46 +00:00
|
|
|
|
result = xp.dot(vector, other.vector) / (self.vector_norm * other.vector_norm)
|
|
|
|
|
# ensure we get a scalar back (numpy does this automatically but cupy doesn't)
|
|
|
|
|
return result.item()
|
2023-07-19 10:03:31 +00:00
|
|
|
|
|
2021-01-15 16:20:10 +00:00
|
|
|
|
def has_morph(self):
|
|
|
|
|
"""Check whether the token has annotated morph information.
|
|
|
|
|
Return False when the morph annotation is unset/missing.
|
|
|
|
|
|
|
|
|
|
RETURNS (bool): Whether the morph annotation is set.
|
|
|
|
|
"""
|
|
|
|
|
return not self.c.morph == 0
|
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@property
|
|
|
|
|
def morph(self):
|
|
|
|
|
return MorphAnalysis.from_id(self.vocab, self.c.morph)
|
2020-09-13 12:06:07 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@morph.setter
|
|
|
|
|
def morph(self, MorphAnalysis morph):
|
|
|
|
|
# Check that the morph has the same vocab
|
|
|
|
|
if self.vocab != morph.vocab:
|
|
|
|
|
raise ValueError(Errors.E1013)
|
|
|
|
|
self.c.morph = morph.c.key
|
2020-10-01 20:21:46 +00:00
|
|
|
|
|
|
|
|
|
def set_morph(self, features):
|
|
|
|
|
cdef hash_t key
|
2020-10-02 06:25:15 +00:00
|
|
|
|
if features is None:
|
2020-10-01 20:21:46 +00:00
|
|
|
|
self.c.morph = 0
|
2020-10-02 06:33:43 +00:00
|
|
|
|
elif isinstance(features, MorphAnalysis):
|
|
|
|
|
self.morph = features
|
2020-10-01 20:21:46 +00:00
|
|
|
|
else:
|
|
|
|
|
if isinstance(features, int):
|
|
|
|
|
features = self.vocab.strings[features]
|
|
|
|
|
key = self.vocab.morphology.add(features)
|
2020-01-23 21:01:54 +00:00
|
|
|
|
self.c.morph = key
|
|
|
|
|
|
2020-08-10 14:43:52 +00:00
|
|
|
|
@property
|
|
|
|
|
def lex(self):
|
|
|
|
|
"""RETURNS (Lexeme): The underlying lexeme."""
|
|
|
|
|
return self.vocab[self.c.lex.orth]
|
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def lex_id(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (int): Sequential ID of the token's lexical type."""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return self.c.lex.id
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def rank(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (int): Sequential ID of the token's lexical type, used to
|
|
|
|
|
index into tables, e.g. for word vectors."""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return self.c.lex.id
|
2015-11-08 15:18:25 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def text(self):
|
2020-05-24 15:20:58 +00:00
|
|
|
|
"""RETURNS (str): The original verbatim text of the token."""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return self.orth_
|
2015-09-13 00:27:42 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def text_with_ws(self):
|
2020-05-24 15:20:58 +00:00
|
|
|
|
"""RETURNS (str): The text content of the span (with trailing
|
2017-10-27 13:41:45 +00:00
|
|
|
|
whitespace).
|
2017-05-19 16:47:56 +00:00
|
|
|
|
"""
|
2021-09-13 15:02:17 +00:00
|
|
|
|
cdef str orth = self.vocab.strings[self.c.lex.orth]
|
2019-03-11 14:59:09 +00:00
|
|
|
|
if self.c.spacy:
|
|
|
|
|
return orth + " "
|
|
|
|
|
else:
|
|
|
|
|
return orth
|
2015-09-13 00:27:42 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def prob(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (float): Smoothed log probability estimate of token type."""
|
2020-05-19 13:59:14 +00:00
|
|
|
|
return self.vocab[self.c.lex.orth].prob
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def sentiment(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (float): A scalar value indicating the positivity or
|
|
|
|
|
negativity of the token."""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
if "sentiment" in self.doc.user_token_hooks:
|
|
|
|
|
return self.doc.user_token_hooks["sentiment"](self)
|
2020-05-19 13:59:14 +00:00
|
|
|
|
return self.vocab[self.c.lex.orth].sentiment
|
2016-10-19 18:54:03 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def lang(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (uint64): ID of the language of the parent document's
|
|
|
|
|
vocabulary.
|
|
|
|
|
"""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return self.c.lex.lang
|
2016-03-10 12:01:34 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def idx(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (int): The character offset of the token within the parent
|
|
|
|
|
document.
|
|
|
|
|
"""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return self.c.idx
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def cluster(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (int): Brown cluster ID."""
|
2020-05-19 13:59:14 +00:00
|
|
|
|
return self.vocab[self.c.lex.orth].cluster
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def orth(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (uint64): ID of the verbatim text content."""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return self.c.lex.orth
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def lower(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (uint64): ID of the lowercase token text."""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return self.c.lex.lower
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def norm(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (uint64): ID of the token's norm, i.e. a normalised form of
|
|
|
|
|
the token text. Usually set in the language's tokenizer exceptions
|
|
|
|
|
or norm exceptions.
|
|
|
|
|
"""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
if self.c.norm == 0:
|
|
|
|
|
return self.c.lex.norm
|
|
|
|
|
else:
|
|
|
|
|
return self.c.norm
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def shape(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (uint64): ID of the token's shape, a transform of the
|
2021-06-15 08:57:08 +00:00
|
|
|
|
token's string, to show orthographic features (e.g. "Xxxx", "dd").
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return self.c.lex.shape
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def prefix(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (uint64): ID of a length-N substring from the start of the
|
|
|
|
|
token. Defaults to `N=1`.
|
|
|
|
|
"""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return self.c.lex.prefix
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def suffix(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (uint64): ID of a length-N substring from the end of the
|
|
|
|
|
token. Defaults to `N=3`.
|
|
|
|
|
"""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return self.c.lex.suffix
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@property
|
|
|
|
|
def lemma(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (uint64): ID of the base form of the word, with no
|
|
|
|
|
inflectional suffixes.
|
2017-05-19 16:47:56 +00:00
|
|
|
|
"""
|
2024-04-16 09:51:14 +00:00
|
|
|
|
return self.c.lemma
|
2017-10-27 15:07:26 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@lemma.setter
|
|
|
|
|
def lemma(self, attr_t lemma):
|
|
|
|
|
self.c.lemma = lemma
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@property
|
|
|
|
|
def pos(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (uint64): ID of coarse-grained part-of-speech tag."""
|
2024-04-16 09:51:14 +00:00
|
|
|
|
return self.c.pos
|
2019-03-08 10:42:26 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@pos.setter
|
|
|
|
|
def pos(self, pos):
|
|
|
|
|
self.c.pos = pos
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@property
|
|
|
|
|
def tag(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (uint64): ID of fine-grained part-of-speech tag."""
|
2024-04-16 09:51:14 +00:00
|
|
|
|
return self.c.tag
|
2017-10-27 15:07:26 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@tag.setter
|
|
|
|
|
def tag(self, attr_t tag):
|
|
|
|
|
self.c.tag = tag
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@property
|
|
|
|
|
def dep(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (uint64): ID of syntactic dependency label."""
|
2024-04-16 09:51:14 +00:00
|
|
|
|
return self.c.dep
|
2017-10-27 15:07:26 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@dep.setter
|
|
|
|
|
def dep(self, attr_t label):
|
|
|
|
|
self.c.dep = label
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def has_vector(self):
|
2017-05-19 16:47:56 +00:00
|
|
|
|
"""A boolean value indicating whether a word vector is associated with
|
|
|
|
|
the object.
|
|
|
|
|
|
|
|
|
|
RETURNS (bool): Whether a word vector is associated with the object.
|
2019-03-08 10:42:26 +00:00
|
|
|
|
|
2021-01-30 09:09:38 +00:00
|
|
|
|
DOCS: https://spacy.io/api/token#has_vector
|
2017-04-15 11:05:15 +00:00
|
|
|
|
"""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
if "has_vector" in self.doc.user_token_hooks:
|
|
|
|
|
return self.doc.user_token_hooks["has_vector"](self)
|
|
|
|
|
if self.vocab.vectors.size == 0 and self.doc.tensor.size != 0:
|
|
|
|
|
return True
|
2023-06-28 07:43:14 +00:00
|
|
|
|
return self.vocab.has_vector(Token.get_struct_attr(self.c, self.vocab.vectors.attr))
|
2015-09-21 09:52:43 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def vector(self):
|
2017-05-19 16:47:56 +00:00
|
|
|
|
"""A real-valued meaning representation.
|
2017-02-26 21:27:11 +00:00
|
|
|
|
|
2017-05-19 16:47:56 +00:00
|
|
|
|
RETURNS (numpy.ndarray[ndim=1, dtype='float32']): A 1D numpy array
|
|
|
|
|
representing the token's semantics.
|
2019-03-08 10:42:26 +00:00
|
|
|
|
|
2021-01-30 09:09:38 +00:00
|
|
|
|
DOCS: https://spacy.io/api/token#vector
|
2017-04-15 11:05:15 +00:00
|
|
|
|
"""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
if "vector" in self.doc.user_token_hooks:
|
|
|
|
|
return self.doc.user_token_hooks["vector"](self)
|
|
|
|
|
if self.vocab.vectors.size == 0 and self.doc.tensor.size != 0:
|
|
|
|
|
return self.doc.tensor[self.i]
|
|
|
|
|
else:
|
2023-06-28 07:43:14 +00:00
|
|
|
|
return self.vocab.get_vector(Token.get_struct_attr(self.c, self.vocab.vectors.attr))
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def vector_norm(self):
|
2017-05-20 13:13:33 +00:00
|
|
|
|
"""The L2 norm of the token's vector representation.
|
2017-05-19 16:47:56 +00:00
|
|
|
|
|
|
|
|
|
RETURNS (float): The L2 norm of the vector representation.
|
2019-03-08 10:42:26 +00:00
|
|
|
|
|
2021-01-30 09:09:38 +00:00
|
|
|
|
DOCS: https://spacy.io/api/token#vector_norm
|
2017-05-19 16:47:56 +00:00
|
|
|
|
"""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
if "vector_norm" in self.doc.user_token_hooks:
|
|
|
|
|
return self.doc.user_token_hooks["vector_norm"](self)
|
|
|
|
|
vector = self.vector
|
2019-03-20 11:09:59 +00:00
|
|
|
|
xp = get_array_module(vector)
|
|
|
|
|
total = (vector ** 2).sum()
|
|
|
|
|
return xp.sqrt(total) if total != 0. else 0.
|
2015-09-14 07:49:58 +00:00
|
|
|
|
|
2019-08-01 16:30:50 +00:00
|
|
|
|
@property
|
|
|
|
|
def tensor(self):
|
|
|
|
|
if self.doc.tensor is None:
|
|
|
|
|
return None
|
|
|
|
|
return self.doc.tensor[self.i]
|
2015-09-14 07:49:58 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def n_lefts(self):
|
2019-03-08 10:42:26 +00:00
|
|
|
|
"""The number of leftward immediate children of the word, in the
|
|
|
|
|
syntactic dependency parse.
|
|
|
|
|
|
|
|
|
|
RETURNS (int): The number of leftward immediate children of the
|
2017-10-27 15:07:26 +00:00
|
|
|
|
word, in the syntactic dependency parse.
|
2019-03-08 10:42:26 +00:00
|
|
|
|
|
2021-01-30 09:09:38 +00:00
|
|
|
|
DOCS: https://spacy.io/api/token#n_lefts
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return self.c.l_kids
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def n_rights(self):
|
2019-03-08 10:42:26 +00:00
|
|
|
|
"""The number of rightward immediate children of the word, in the
|
|
|
|
|
syntactic dependency parse.
|
|
|
|
|
|
|
|
|
|
RETURNS (int): The number of rightward immediate children of the
|
2017-10-27 15:07:26 +00:00
|
|
|
|
word, in the syntactic dependency parse.
|
2019-03-08 10:42:26 +00:00
|
|
|
|
|
2021-01-30 09:09:38 +00:00
|
|
|
|
DOCS: https://spacy.io/api/token#n_rights
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return self.c.r_kids
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def sent(self):
|
2018-07-06 13:54:15 +00:00
|
|
|
|
"""RETURNS (Span): The sentence span that the token is a part of."""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
if 'sent' in self.doc.user_token_hooks:
|
|
|
|
|
return self.doc.user_token_hooks["sent"](self)
|
|
|
|
|
return self.doc[self.i : self.i+1].sent
|
2018-07-06 13:54:15 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@property
|
|
|
|
|
def sent_start(self):
|
|
|
|
|
"""Deprecated: use Token.is_sent_start instead."""
|
|
|
|
|
# Raising a deprecation warning here causes errors for autocomplete
|
|
|
|
|
# Handle broken backwards compatibility case: doc[0].sent_start
|
|
|
|
|
# was False.
|
|
|
|
|
if self.i == 0:
|
|
|
|
|
return False
|
|
|
|
|
else:
|
|
|
|
|
return self.c.sent_start
|
2017-11-01 12:27:14 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@sent_start.setter
|
|
|
|
|
def sent_start(self, value):
|
|
|
|
|
self.is_sent_start = value
|
2017-11-01 12:27:14 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@property
|
|
|
|
|
def is_sent_start(self):
|
2019-03-08 10:42:26 +00:00
|
|
|
|
"""A boolean value indicating whether the token starts a sentence.
|
|
|
|
|
`None` if unknown. Defaults to `True` for the first token in the `Doc`.
|
|
|
|
|
|
|
|
|
|
RETURNS (bool / None): Whether the token starts a sentence.
|
2017-11-01 12:27:14 +00:00
|
|
|
|
None if unknown.
|
|
|
|
|
"""
|
2024-04-16 09:51:14 +00:00
|
|
|
|
if self.c.sent_start == 0:
|
|
|
|
|
return None
|
|
|
|
|
elif self.c.sent_start < 0:
|
|
|
|
|
return False
|
|
|
|
|
else:
|
|
|
|
|
return True
|
2016-05-05 09:53:20 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@is_sent_start.setter
|
|
|
|
|
def is_sent_start(self, value):
|
|
|
|
|
if self.doc.has_annotation("DEP"):
|
|
|
|
|
raise ValueError(Errors.E043)
|
|
|
|
|
if value is None:
|
|
|
|
|
self.c.sent_start = 0
|
|
|
|
|
elif value is True:
|
|
|
|
|
self.c.sent_start = 1
|
|
|
|
|
elif value is False:
|
|
|
|
|
self.c.sent_start = -1
|
|
|
|
|
else:
|
|
|
|
|
raise ValueError(Errors.E044.format(value=value))
|
2016-05-05 09:53:20 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@property
|
|
|
|
|
def is_sent_end(self):
|
2020-04-29 10:53:16 +00:00
|
|
|
|
"""A boolean value indicating whether the token ends a sentence.
|
|
|
|
|
`None` if unknown. Defaults to `True` for the last token in the `Doc`.
|
|
|
|
|
|
|
|
|
|
RETURNS (bool / None): Whether the token ends a sentence.
|
|
|
|
|
None if unknown.
|
|
|
|
|
|
2021-01-30 09:09:38 +00:00
|
|
|
|
DOCS: https://spacy.io/api/token#is_sent_end
|
2020-04-29 10:53:16 +00:00
|
|
|
|
"""
|
2024-04-16 09:51:14 +00:00
|
|
|
|
if self.i + 1 == len(self.doc):
|
|
|
|
|
return True
|
|
|
|
|
elif self.doc[self.i+1].is_sent_start is None:
|
|
|
|
|
return None
|
|
|
|
|
elif self.doc[self.i+1].is_sent_start is True:
|
|
|
|
|
return True
|
|
|
|
|
else:
|
|
|
|
|
return False
|
2020-04-29 10:53:16 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@is_sent_end.setter
|
|
|
|
|
def is_sent_end(self, value):
|
|
|
|
|
raise ValueError(Errors.E196)
|
2020-04-29 10:53:16 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def lefts(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""The leftward immediate children of the word, in the syntactic
|
|
|
|
|
dependency parse.
|
|
|
|
|
|
|
|
|
|
YIELDS (Token): A left-child of the token.
|
2019-03-08 10:42:26 +00:00
|
|
|
|
|
2021-01-30 09:09:38 +00:00
|
|
|
|
DOCS: https://spacy.io/api/token#lefts
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
cdef int nr_iter = 0
|
|
|
|
|
cdef const TokenC* ptr = self.c - (self.i - self.c.l_edge)
|
|
|
|
|
while ptr < self.c:
|
|
|
|
|
if ptr + ptr.head == self.c:
|
|
|
|
|
yield self.doc[ptr - (self.c - self.i)]
|
|
|
|
|
ptr += 1
|
|
|
|
|
nr_iter += 1
|
|
|
|
|
# This is ugly, but it's a way to guard out infinite loops
|
|
|
|
|
if nr_iter >= 10000000:
|
|
|
|
|
raise RuntimeError(Errors.E045.format(attr="token.lefts"))
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def rights(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""The rightward immediate children of the word, in the syntactic
|
|
|
|
|
dependency parse.
|
|
|
|
|
|
|
|
|
|
YIELDS (Token): A right-child of the token.
|
2019-03-08 10:42:26 +00:00
|
|
|
|
|
2021-01-30 09:09:38 +00:00
|
|
|
|
DOCS: https://spacy.io/api/token#rights
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
cdef const TokenC* ptr = self.c + (self.c.r_edge - self.i)
|
|
|
|
|
tokens = []
|
|
|
|
|
cdef int nr_iter = 0
|
|
|
|
|
while ptr > self.c:
|
|
|
|
|
if ptr + ptr.head == self.c:
|
|
|
|
|
tokens.append(self.doc[ptr - (self.c - self.i)])
|
|
|
|
|
ptr -= 1
|
|
|
|
|
nr_iter += 1
|
|
|
|
|
if nr_iter >= 10000000:
|
|
|
|
|
raise RuntimeError(Errors.E045.format(attr="token.rights"))
|
|
|
|
|
tokens.reverse()
|
|
|
|
|
for t in tokens:
|
|
|
|
|
yield t
|
|
|
|
|
|
|
|
|
|
@property
|
|
|
|
|
def children(self):
|
2017-10-27 13:41:45 +00:00
|
|
|
|
"""A sequence of the token's immediate syntactic children.
|
2016-11-01 11:25:36 +00:00
|
|
|
|
|
2019-03-08 10:42:26 +00:00
|
|
|
|
YIELDS (Token): A child token such that `child.head==self`.
|
|
|
|
|
|
2021-01-30 09:09:38 +00:00
|
|
|
|
DOCS: https://spacy.io/api/token#children
|
2017-04-15 11:05:15 +00:00
|
|
|
|
"""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
yield from self.lefts
|
|
|
|
|
yield from self.rights
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def subtree(self):
|
2019-01-09 02:11:15 +00:00
|
|
|
|
"""A sequence containing the token and all the token's syntactic
|
|
|
|
|
descendants.
|
2016-11-01 11:25:36 +00:00
|
|
|
|
|
2017-10-27 13:41:45 +00:00
|
|
|
|
YIELDS (Token): A descendent token such that
|
2019-01-09 02:11:15 +00:00
|
|
|
|
`self.is_ancestor(descendent) or token == self`.
|
2019-03-08 10:42:26 +00:00
|
|
|
|
|
2021-01-30 09:09:38 +00:00
|
|
|
|
DOCS: https://spacy.io/api/token#subtree
|
2017-04-15 11:05:15 +00:00
|
|
|
|
"""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
for word in self.lefts:
|
|
|
|
|
yield from word.subtree
|
|
|
|
|
yield self
|
|
|
|
|
for word in self.rights:
|
|
|
|
|
yield from word.subtree
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
🏷 Add Mypy check to CI and ignore all existing Mypy errors (#9167)
* 🚨 Ignore all existing Mypy errors
* 🏗 Add Mypy check to CI
* Add types-mock and types-requests as dev requirements
* Add additional type ignore directives
* Add types packages to dev-only list in reqs test
* Add types-dataclasses for python 3.6
* Add ignore to pretrain
* 🏷 Improve type annotation on `run_command` helper
The `run_command` helper previously declared that it returned an
`Optional[subprocess.CompletedProcess]`, but it isn't actually possible
for the function to return `None`. These changes modify the type
annotation of the `run_command` helper and remove all now-unnecessary
`# type: ignore` directives.
* 🔧 Allow variable type redefinition in limited contexts
These changes modify how Mypy is configured to allow variables to have
their type automatically redefined under certain conditions. The Mypy
documentation contains the following example:
```python
def process(items: List[str]) -> None:
# 'items' has type List[str]
items = [item.split() for item in items]
# 'items' now has type List[List[str]]
...
```
This configuration change is especially helpful in reducing the number
of `# type: ignore` directives needed to handle the common pattern of:
* Accepting a filepath as a string
* Overwriting the variable using `filepath = ensure_path(filepath)`
These changes enable redefinition and remove all `# type: ignore`
directives rendered redundant by this change.
* 🏷 Add type annotation to converters mapping
* 🚨 Fix Mypy error in convert CLI argument verification
* 🏷 Improve type annotation on `resolve_dot_names` helper
* 🏷 Add type annotations for `Vocab` attributes `strings` and `vectors`
* 🏷 Add type annotations for more `Vocab` attributes
* 🏷 Add loose type annotation for gold data compilation
* 🏷 Improve `_format_labels` type annotation
* 🏷 Fix `get_lang_class` type annotation
* 🏷 Loosen return type of `Language.evaluate`
* 🏷 Don't accept `Scorer` in `handle_scores_per_type`
* 🏷 Add `string_to_list` overloads
* 🏷 Fix non-Optional command-line options
* 🙈 Ignore redefinition of `wandb_logger` in `loggers.py`
* ➕ Install `typing_extensions` in Python 3.8+
The `typing_extensions` package states that it should be used when
"writing code that must be compatible with multiple Python versions".
Since SpaCy needs to support multiple Python versions, it should be used
when newer `typing` module members are required. One example of this is
`Literal`, which is available starting with Python 3.8.
Previously SpaCy tried to import `Literal` from `typing`, falling back
to `typing_extensions` if the import failed. However, Mypy doesn't seem
to be able to understand what `Literal` means when the initial import
means. Therefore, these changes modify how `compat` imports `Literal` by
always importing it from `typing_extensions`.
These changes also modify how `typing_extensions` is installed, so that
it is a requirement for all Python versions, including those greater
than or equal to 3.8.
* 🏷 Improve type annotation for `Language.pipe`
These changes add a missing overload variant to the type signature of
`Language.pipe`. Additionally, the type signature is enhanced to allow
type checkers to differentiate between the two overload variants based
on the `as_tuple` parameter.
Fixes #8772
* ➖ Don't install `typing-extensions` in Python 3.8+
After more detailed analysis of how to implement Python version-specific
type annotations using SpaCy, it has been determined that by branching
on a comparison against `sys.version_info` can be statically analyzed by
Mypy well enough to enable us to conditionally use
`typing_extensions.Literal`. This means that we no longer need to
install `typing_extensions` for Python versions greater than or equal to
3.8! 🎉
These changes revert previous changes installing `typing-extensions`
regardless of Python version and modify how we import the `Literal` type
to ensure that Mypy treats it properly.
* resolve mypy errors for Strict pydantic types
* refactor code to avoid missing return statement
* fix types of convert CLI command
* avoid list-set confustion in debug_data
* fix typo and formatting
* small fixes to avoid type ignores
* fix types in profile CLI command and make it more efficient
* type fixes in projects CLI
* put one ignore back
* type fixes for render
* fix render types - the sequel
* fix BaseDefault in language definitions
* fix type of noun_chunks iterator - yields tuple instead of span
* fix types in language-specific modules
* 🏷 Expand accepted inputs of `get_string_id`
`get_string_id` accepts either a string (in which case it returns its
ID) or an ID (in which case it immediately returns the ID). These
changes extend the type annotation of `get_string_id` to indicate that
it can accept either strings or IDs.
* 🏷 Handle override types in `combine_score_weights`
The `combine_score_weights` function allows users to pass an `overrides`
mapping to override data extracted from the `weights` argument. Since it
allows `Optional` dictionary values, the return value may also include
`Optional` dictionary values.
These changes update the type annotations for `combine_score_weights` to
reflect this fact.
* 🏷 Fix tokenizer serialization method signatures in `DummyTokenizer`
* 🏷 Fix redefinition of `wandb_logger`
These changes fix the redefinition of `wandb_logger` by giving a
separate name to each `WandbLogger` version. For
backwards-compatibility, `spacy.train` still exports `wandb_logger_v3`
as `wandb_logger` for now.
* more fixes for typing in language
* type fixes in model definitions
* 🏷 Annotate `_RandomWords.probs` as `NDArray`
* 🏷 Annotate `tok2vec` layers to help Mypy
* 🐛 Fix `_RandomWords.probs` type annotations for Python 3.6
Also remove an import that I forgot to move to the top of the module 😅
* more fixes for matchers and other pipeline components
* quick fix for entity linker
* fixing types for spancat, textcat, etc
* bugfix for tok2vec
* type annotations for scorer
* add runtime_checkable for Protocol
* type and import fixes in tests
* mypy fixes for training utilities
* few fixes in util
* fix import
* 🐵 Remove unused `# type: ignore` directives
* 🏷 Annotate `Language._components`
* 🏷 Annotate `spacy.pipeline.Pipe`
* add doc as property to span.pyi
* small fixes and cleanup
* explicit type annotations instead of via comment
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
Co-authored-by: svlandeg <svlandeg@github.com>
2021-10-14 13:21:40 +00:00
|
|
|
|
def left_edge(self) -> int:
|
2017-05-19 16:47:56 +00:00
|
|
|
|
"""The leftmost token of this token's syntactic descendents.
|
2016-11-01 11:25:36 +00:00
|
|
|
|
|
2017-05-19 16:47:56 +00:00
|
|
|
|
RETURNS (Token): The first token such that `self.is_ancestor(token)`.
|
2017-04-15 11:05:15 +00:00
|
|
|
|
"""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return self.doc[self.c.l_edge]
|
2015-08-08 21:37:44 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
🏷 Add Mypy check to CI and ignore all existing Mypy errors (#9167)
* 🚨 Ignore all existing Mypy errors
* 🏗 Add Mypy check to CI
* Add types-mock and types-requests as dev requirements
* Add additional type ignore directives
* Add types packages to dev-only list in reqs test
* Add types-dataclasses for python 3.6
* Add ignore to pretrain
* 🏷 Improve type annotation on `run_command` helper
The `run_command` helper previously declared that it returned an
`Optional[subprocess.CompletedProcess]`, but it isn't actually possible
for the function to return `None`. These changes modify the type
annotation of the `run_command` helper and remove all now-unnecessary
`# type: ignore` directives.
* 🔧 Allow variable type redefinition in limited contexts
These changes modify how Mypy is configured to allow variables to have
their type automatically redefined under certain conditions. The Mypy
documentation contains the following example:
```python
def process(items: List[str]) -> None:
# 'items' has type List[str]
items = [item.split() for item in items]
# 'items' now has type List[List[str]]
...
```
This configuration change is especially helpful in reducing the number
of `# type: ignore` directives needed to handle the common pattern of:
* Accepting a filepath as a string
* Overwriting the variable using `filepath = ensure_path(filepath)`
These changes enable redefinition and remove all `# type: ignore`
directives rendered redundant by this change.
* 🏷 Add type annotation to converters mapping
* 🚨 Fix Mypy error in convert CLI argument verification
* 🏷 Improve type annotation on `resolve_dot_names` helper
* 🏷 Add type annotations for `Vocab` attributes `strings` and `vectors`
* 🏷 Add type annotations for more `Vocab` attributes
* 🏷 Add loose type annotation for gold data compilation
* 🏷 Improve `_format_labels` type annotation
* 🏷 Fix `get_lang_class` type annotation
* 🏷 Loosen return type of `Language.evaluate`
* 🏷 Don't accept `Scorer` in `handle_scores_per_type`
* 🏷 Add `string_to_list` overloads
* 🏷 Fix non-Optional command-line options
* 🙈 Ignore redefinition of `wandb_logger` in `loggers.py`
* ➕ Install `typing_extensions` in Python 3.8+
The `typing_extensions` package states that it should be used when
"writing code that must be compatible with multiple Python versions".
Since SpaCy needs to support multiple Python versions, it should be used
when newer `typing` module members are required. One example of this is
`Literal`, which is available starting with Python 3.8.
Previously SpaCy tried to import `Literal` from `typing`, falling back
to `typing_extensions` if the import failed. However, Mypy doesn't seem
to be able to understand what `Literal` means when the initial import
means. Therefore, these changes modify how `compat` imports `Literal` by
always importing it from `typing_extensions`.
These changes also modify how `typing_extensions` is installed, so that
it is a requirement for all Python versions, including those greater
than or equal to 3.8.
* 🏷 Improve type annotation for `Language.pipe`
These changes add a missing overload variant to the type signature of
`Language.pipe`. Additionally, the type signature is enhanced to allow
type checkers to differentiate between the two overload variants based
on the `as_tuple` parameter.
Fixes #8772
* ➖ Don't install `typing-extensions` in Python 3.8+
After more detailed analysis of how to implement Python version-specific
type annotations using SpaCy, it has been determined that by branching
on a comparison against `sys.version_info` can be statically analyzed by
Mypy well enough to enable us to conditionally use
`typing_extensions.Literal`. This means that we no longer need to
install `typing_extensions` for Python versions greater than or equal to
3.8! 🎉
These changes revert previous changes installing `typing-extensions`
regardless of Python version and modify how we import the `Literal` type
to ensure that Mypy treats it properly.
* resolve mypy errors for Strict pydantic types
* refactor code to avoid missing return statement
* fix types of convert CLI command
* avoid list-set confustion in debug_data
* fix typo and formatting
* small fixes to avoid type ignores
* fix types in profile CLI command and make it more efficient
* type fixes in projects CLI
* put one ignore back
* type fixes for render
* fix render types - the sequel
* fix BaseDefault in language definitions
* fix type of noun_chunks iterator - yields tuple instead of span
* fix types in language-specific modules
* 🏷 Expand accepted inputs of `get_string_id`
`get_string_id` accepts either a string (in which case it returns its
ID) or an ID (in which case it immediately returns the ID). These
changes extend the type annotation of `get_string_id` to indicate that
it can accept either strings or IDs.
* 🏷 Handle override types in `combine_score_weights`
The `combine_score_weights` function allows users to pass an `overrides`
mapping to override data extracted from the `weights` argument. Since it
allows `Optional` dictionary values, the return value may also include
`Optional` dictionary values.
These changes update the type annotations for `combine_score_weights` to
reflect this fact.
* 🏷 Fix tokenizer serialization method signatures in `DummyTokenizer`
* 🏷 Fix redefinition of `wandb_logger`
These changes fix the redefinition of `wandb_logger` by giving a
separate name to each `WandbLogger` version. For
backwards-compatibility, `spacy.train` still exports `wandb_logger_v3`
as `wandb_logger` for now.
* more fixes for typing in language
* type fixes in model definitions
* 🏷 Annotate `_RandomWords.probs` as `NDArray`
* 🏷 Annotate `tok2vec` layers to help Mypy
* 🐛 Fix `_RandomWords.probs` type annotations for Python 3.6
Also remove an import that I forgot to move to the top of the module 😅
* more fixes for matchers and other pipeline components
* quick fix for entity linker
* fixing types for spancat, textcat, etc
* bugfix for tok2vec
* type annotations for scorer
* add runtime_checkable for Protocol
* type and import fixes in tests
* mypy fixes for training utilities
* few fixes in util
* fix import
* 🐵 Remove unused `# type: ignore` directives
* 🏷 Annotate `Language._components`
* 🏷 Annotate `spacy.pipeline.Pipe`
* add doc as property to span.pyi
* small fixes and cleanup
* explicit type annotations instead of via comment
Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
Co-authored-by: svlandeg <sofie.vanlandeghem@gmail.com>
Co-authored-by: svlandeg <svlandeg@github.com>
2021-10-14 13:21:40 +00:00
|
|
|
|
def right_edge(self) -> int:
|
2017-05-19 16:47:56 +00:00
|
|
|
|
"""The rightmost token of this token's syntactic descendents.
|
2016-11-01 11:25:36 +00:00
|
|
|
|
|
2017-05-19 16:47:56 +00:00
|
|
|
|
RETURNS (Token): The last token such that `self.is_ancestor(token)`.
|
2017-04-15 11:05:15 +00:00
|
|
|
|
"""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return self.doc[self.c.r_edge]
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def ancestors(self):
|
2017-05-19 16:47:56 +00:00
|
|
|
|
"""A sequence of this token's syntactic ancestors.
|
2016-11-01 11:25:36 +00:00
|
|
|
|
|
2017-05-19 16:47:56 +00:00
|
|
|
|
YIELDS (Token): A sequence of ancestor tokens such that
|
|
|
|
|
`ancestor.is_ancestor(self)`.
|
2019-03-08 10:42:26 +00:00
|
|
|
|
|
2021-01-30 09:09:38 +00:00
|
|
|
|
DOCS: https://spacy.io/api/token#ancestors
|
2017-04-15 11:05:15 +00:00
|
|
|
|
"""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
cdef const TokenC* head_ptr = self.c
|
|
|
|
|
# Guard against infinite loop, no token can have
|
|
|
|
|
# more ancestors than tokens in the tree.
|
|
|
|
|
cdef int i = 0
|
|
|
|
|
while head_ptr.head != 0 and i < self.doc.length:
|
|
|
|
|
head_ptr += head_ptr.head
|
|
|
|
|
yield self.doc[head_ptr - (self.c - self.i)]
|
|
|
|
|
i += 1
|
2016-03-11 16:31:06 +00:00
|
|
|
|
|
2016-11-01 11:25:36 +00:00
|
|
|
|
def is_ancestor(self, descendant):
|
2017-05-19 16:47:56 +00:00
|
|
|
|
"""Check whether this token is a parent, grandparent, etc. of another
|
2016-11-01 11:25:36 +00:00
|
|
|
|
in the dependency tree.
|
|
|
|
|
|
2017-05-19 16:47:56 +00:00
|
|
|
|
descendant (Token): Another token.
|
|
|
|
|
RETURNS (bool): Whether this token is the ancestor of the descendant.
|
2019-03-08 10:42:26 +00:00
|
|
|
|
|
2021-01-30 09:09:38 +00:00
|
|
|
|
DOCS: https://spacy.io/api/token#is_ancestor
|
2017-04-15 11:05:15 +00:00
|
|
|
|
"""
|
2016-11-01 12:28:00 +00:00
|
|
|
|
if self.doc is not descendant.doc:
|
2016-11-01 11:25:36 +00:00
|
|
|
|
return False
|
2017-10-27 15:07:26 +00:00
|
|
|
|
return any(ancestor.i == self.i for ancestor in descendant.ancestors)
|
2016-03-11 16:31:06 +00:00
|
|
|
|
|
2021-01-12 16:17:06 +00:00
|
|
|
|
def has_head(self):
|
|
|
|
|
"""Check whether the token has annotated head information.
|
2021-01-13 13:20:05 +00:00
|
|
|
|
Return False when the head annotation is unset/missing.
|
2021-01-12 16:17:06 +00:00
|
|
|
|
|
|
|
|
|
RETURNS (bool): Whether the head annotation is valid or not.
|
|
|
|
|
"""
|
2021-01-13 13:20:05 +00:00
|
|
|
|
return not Token.missing_head(self.c)
|
2021-01-12 16:17:06 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@property
|
|
|
|
|
def head(self):
|
2021-01-30 09:09:38 +00:00
|
|
|
|
"""The syntactic parent, or "governor", of this token.
|
|
|
|
|
If token.has_head() is `False`, this method will return itself.
|
2017-02-26 21:27:11 +00:00
|
|
|
|
|
2017-10-27 15:07:26 +00:00
|
|
|
|
RETURNS (Token): The token predicted by the parser to be the head of
|
2021-01-12 16:17:06 +00:00
|
|
|
|
the current token.
|
2017-04-15 11:05:15 +00:00
|
|
|
|
"""
|
2024-04-16 09:51:14 +00:00
|
|
|
|
if not self.has_head():
|
|
|
|
|
return self
|
|
|
|
|
else:
|
|
|
|
|
return self.doc[self.i + self.c.head]
|
|
|
|
|
|
|
|
|
|
@head.setter
|
|
|
|
|
def head(self, Token new_head):
|
|
|
|
|
# This function sets the head of self to new_head and updates the
|
|
|
|
|
# counters for left/right dependents and left/right corner for the
|
|
|
|
|
# new and the old head
|
|
|
|
|
# Check that token is from the same document
|
|
|
|
|
if self.doc != new_head.doc:
|
|
|
|
|
raise ValueError(Errors.E191)
|
|
|
|
|
# Do nothing if old head is new head
|
|
|
|
|
if self.i + self.c.head == new_head.i:
|
|
|
|
|
return
|
|
|
|
|
# Find the widest l/r_edges of the roots of the two tokens involved
|
|
|
|
|
# to limit the number of tokens for set_children_from_heads
|
|
|
|
|
cdef Token self_root, new_head_root
|
|
|
|
|
self_root = ([self] + list(self.ancestors))[-1]
|
|
|
|
|
new_head_ancestors = list(new_head.ancestors)
|
|
|
|
|
new_head_root = new_head_ancestors[-1] if new_head_ancestors else new_head
|
|
|
|
|
start = self_root.c.l_edge if self_root.c.l_edge < new_head_root.c.l_edge else new_head_root.c.l_edge
|
|
|
|
|
end = self_root.c.r_edge if self_root.c.r_edge > new_head_root.c.r_edge else new_head_root.c.r_edge
|
|
|
|
|
# Set new head
|
|
|
|
|
self.c.head = new_head.i - self.i
|
|
|
|
|
# Adjust parse properties and sentence starts
|
|
|
|
|
set_children_from_heads(self.doc.c, start, end + 1)
|
2015-08-08 21:37:44 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def conjuncts(self):
|
2017-05-19 16:47:56 +00:00
|
|
|
|
"""A sequence of coordinated tokens, including the token itself.
|
2016-11-01 11:25:36 +00:00
|
|
|
|
|
2019-03-11 16:05:45 +00:00
|
|
|
|
RETURNS (tuple): The coordinated tokens.
|
2019-03-08 10:42:26 +00:00
|
|
|
|
|
2021-01-30 09:09:38 +00:00
|
|
|
|
DOCS: https://spacy.io/api/token#conjuncts
|
2017-04-15 11:05:15 +00:00
|
|
|
|
"""
|
2019-03-11 16:05:45 +00:00
|
|
|
|
cdef Token word, child
|
2019-03-11 14:59:09 +00:00
|
|
|
|
if "conjuncts" in self.doc.user_token_hooks:
|
2019-03-11 16:05:45 +00:00
|
|
|
|
return tuple(self.doc.user_token_hooks["conjuncts"](self))
|
|
|
|
|
start = self
|
|
|
|
|
while start.i != start.head.i:
|
|
|
|
|
if start.dep == conj:
|
|
|
|
|
start = start.head
|
2016-10-17 00:44:49 +00:00
|
|
|
|
else:
|
2019-03-11 16:05:45 +00:00
|
|
|
|
break
|
|
|
|
|
queue = [start]
|
|
|
|
|
output = [start]
|
|
|
|
|
for word in queue:
|
|
|
|
|
for child in word.rights:
|
|
|
|
|
if child.c.dep == conj:
|
|
|
|
|
output.append(child)
|
|
|
|
|
queue.append(child)
|
|
|
|
|
return tuple([w for w in output if w.i != self.i])
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@property
|
|
|
|
|
def ent_type(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (uint64): Named entity type."""
|
2024-04-16 09:51:14 +00:00
|
|
|
|
return self.c.ent_type
|
2017-10-27 15:07:26 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@ent_type.setter
|
|
|
|
|
def ent_type(self, ent_type):
|
|
|
|
|
self.c.ent_type = ent_type
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@property
|
|
|
|
|
def ent_type_(self):
|
2020-05-24 15:20:58 +00:00
|
|
|
|
"""RETURNS (str): Named entity type."""
|
2024-04-16 09:51:14 +00:00
|
|
|
|
return self.vocab.strings[self.c.ent_type]
|
2017-10-27 15:07:26 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@ent_type_.setter
|
|
|
|
|
def ent_type_(self, ent_type):
|
|
|
|
|
self.c.ent_type = self.vocab.strings.add(ent_type)
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def ent_iob(self):
|
|
|
|
|
"""IOB code of named entity tag. `1="I", 2="O", 3="B"`. 0 means no tag
|
|
|
|
|
is assigned.
|
|
|
|
|
|
|
|
|
|
RETURNS (uint64): IOB code of named entity tag.
|
|
|
|
|
"""
|
|
|
|
|
return self.c.ent_iob
|
|
|
|
|
|
2020-06-26 17:34:12 +00:00
|
|
|
|
@classmethod
|
|
|
|
|
def iob_strings(cls):
|
2022-01-20 12:19:38 +00:00
|
|
|
|
return IOB_STRINGS
|
2020-06-26 17:34:12 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def ent_iob_(self):
|
2017-05-19 16:47:56 +00:00
|
|
|
|
"""IOB code of named entity tag. "B" means the token begins an entity,
|
2017-10-27 13:41:45 +00:00
|
|
|
|
"I" means it is inside an entity, "O" means it is outside an entity,
|
2019-09-18 19:37:17 +00:00
|
|
|
|
and "" means no entity tag is set. "B" with an empty ent_type
|
|
|
|
|
means that the token is blocked from further processing by NER.
|
2017-05-19 16:47:56 +00:00
|
|
|
|
|
2020-05-24 15:20:58 +00:00
|
|
|
|
RETURNS (str): IOB code of named entity tag.
|
2017-05-19 16:47:56 +00:00
|
|
|
|
"""
|
2020-06-26 17:34:12 +00:00
|
|
|
|
return self.iob_strings()[self.c.ent_iob]
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@property
|
|
|
|
|
def ent_id(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (uint64): ID of the entity the token is an instance of,
|
|
|
|
|
if any.
|
2017-04-15 11:05:15 +00:00
|
|
|
|
"""
|
2024-04-16 09:51:14 +00:00
|
|
|
|
return self.c.ent_id
|
2016-09-21 12:54:55 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@ent_id.setter
|
|
|
|
|
def ent_id(self, hash_t key):
|
|
|
|
|
self.c.ent_id = key
|
2016-09-21 12:54:55 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@property
|
|
|
|
|
def ent_id_(self):
|
2020-05-24 15:20:58 +00:00
|
|
|
|
"""RETURNS (str): ID of the entity the token is an instance of,
|
2017-10-27 15:07:26 +00:00
|
|
|
|
if any.
|
2017-04-15 11:05:15 +00:00
|
|
|
|
"""
|
2024-04-16 09:51:14 +00:00
|
|
|
|
return self.vocab.strings[self.c.ent_id]
|
2016-09-21 12:54:55 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@ent_id_.setter
|
|
|
|
|
def ent_id_(self, name):
|
|
|
|
|
self.c.ent_id = self.vocab.strings.add(name)
|
2016-09-21 12:54:55 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@property
|
|
|
|
|
def ent_kb_id(self):
|
2019-03-14 14:48:40 +00:00
|
|
|
|
"""RETURNS (uint64): Named entity KB ID."""
|
2024-04-16 09:51:14 +00:00
|
|
|
|
return self.c.ent_kb_id
|
2019-03-14 14:48:40 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@ent_kb_id.setter
|
|
|
|
|
def ent_kb_id(self, attr_t ent_kb_id):
|
|
|
|
|
self.c.ent_kb_id = ent_kb_id
|
2019-03-14 14:48:40 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@property
|
|
|
|
|
def ent_kb_id_(self):
|
2020-05-24 15:20:58 +00:00
|
|
|
|
"""RETURNS (str): Named entity KB ID."""
|
2024-04-16 09:51:14 +00:00
|
|
|
|
return self.vocab.strings[self.c.ent_kb_id]
|
2019-03-14 14:48:40 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@ent_kb_id_.setter
|
|
|
|
|
def ent_kb_id_(self, ent_kb_id):
|
|
|
|
|
self.c.ent_kb_id = self.vocab.strings.add(ent_kb_id)
|
2019-03-14 14:48:40 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def whitespace_(self):
|
2020-05-24 15:20:58 +00:00
|
|
|
|
"""RETURNS (str): The trailing whitespace character, if present."""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return " " if self.c.spacy else ""
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def orth_(self):
|
2020-05-24 15:20:58 +00:00
|
|
|
|
"""RETURNS (str): Verbatim text content (identical to
|
💫 Port master changes over to develop (#2979)
* Create aryaprabhudesai.md (#2681)
* Update _install.jade (#2688)
Typo fix: "models" -> "model"
* Add FAC to spacy.explain (resolves #2706)
* Remove docstrings for deprecated arguments (see #2703)
* When calling getoption() in conftest.py, pass a default option (#2709)
* When calling getoption() in conftest.py, pass a default option
This is necessary to allow testing an installed spacy by running:
pytest --pyargs spacy
* Add contributor agreement
* update bengali token rules for hyphen and digits (#2731)
* Less norm computations in token similarity (#2730)
* Less norm computations in token similarity
* Contributor agreement
* Remove ')' for clarity (#2737)
Sorry, don't mean to be nitpicky, I just noticed this when going through the CLI and thought it was a quick fix. That said, if this was intention than please let me know.
* added contributor agreement for mbkupfer (#2738)
* Basic support for Telugu language (#2751)
* Lex _attrs for polish language (#2750)
* Signed spaCy contributor agreement
* Added polish version of english lex_attrs
* Introduces a bulk merge function, in order to solve issue #653 (#2696)
* Fix comment
* Introduce bulk merge to increase performance on many span merges
* Sign contributor agreement
* Implement pull request suggestions
* Describe converters more explicitly (see #2643)
* Add multi-threading note to Language.pipe (resolves #2582) [ci skip]
* Fix formatting
* Fix dependency scheme docs (closes #2705) [ci skip]
* Don't set stop word in example (closes #2657) [ci skip]
* Add words to portuguese language _num_words (#2759)
* Add words to portuguese language _num_words
* Add words to portuguese language _num_words
* Update Indonesian model (#2752)
* adding e-KTP in tokenizer exceptions list
* add exception token
* removing lines with containing space as it won't matter since we use .split() method in the end, added new tokens in exception
* add tokenizer exceptions list
* combining base_norms with norm_exceptions
* adding norm_exception
* fix double key in lemmatizer
* remove unused import on punctuation.py
* reformat stop_words to reduce number of lines, improve readibility
* updating tokenizer exception
* implement is_currency for lang/id
* adding orth_first_upper in tokenizer_exceptions
* update the norm_exception list
* remove bunch of abbreviations
* adding contributors file
* Fixed spaCy+Keras example (#2763)
* bug fixes in keras example
* created contributor agreement
* Adding French hyphenated first name (#2786)
* Fix typo (closes #2784)
* Fix typo (#2795) [ci skip]
Fixed typo on line 6 "regcognizer --> recognizer"
* Adding basic support for Sinhala language. (#2788)
* adding Sinhala language package, stop words, examples and lex_attrs.
* Adding contributor agreement
* Updating contributor agreement
* Also include lowercase norm exceptions
* Fix error (#2802)
* Fix error
ValueError: cannot resize an array that references or is referenced
by another array in this way. Use the resize function
* added spaCy Contributor Agreement
* Add charlax's contributor agreement (#2805)
* agreement of contributor, may I introduce a tiny pl languge contribution (#2799)
* Contributors agreement
* Contributors agreement
* Contributors agreement
* Add jupyter=True to displacy.render in documentation (#2806)
* Revert "Also include lowercase norm exceptions"
This reverts commit 70f4e8adf37cfcfab60be2b97d6deae949b30e9e.
* Remove deprecated encoding argument to msgpack
* Set up dependency tree pattern matching skeleton (#2732)
* Fix bug when too many entity types. Fixes #2800
* Fix Python 2 test failure
* Require older msgpack-numpy
* Restore encoding arg on msgpack-numpy
* Try to fix version pin for msgpack-numpy
* Update Portuguese Language (#2790)
* Add words to portuguese language _num_words
* Add words to portuguese language _num_words
* Portuguese - Add/remove stopwords, fix tokenizer, add currency symbols
* Extended punctuation and norm_exceptions in the Portuguese language
* Correct error in spacy universe docs concerning spacy-lookup (#2814)
* Update Keras Example for (Parikh et al, 2016) implementation (#2803)
* bug fixes in keras example
* created contributor agreement
* baseline for Parikh model
* initial version of parikh 2016 implemented
* tested asymmetric models
* fixed grevious error in normalization
* use standard SNLI test file
* begin to rework parikh example
* initial version of running example
* start to document the new version
* start to document the new version
* Update Decompositional Attention.ipynb
* fixed calls to similarity
* updated the README
* import sys package duh
* simplified indexing on mapping word to IDs
* stupid python indent error
* added code from https://github.com/tensorflow/tensorflow/issues/3388 for tf bug workaround
* Fix typo (closes #2815) [ci skip]
* Update regex version dependency
* Set version to 2.0.13.dev3
* Skip seemingly problematic test
* Remove problematic test
* Try previous version of regex
* Revert "Remove problematic test"
This reverts commit bdebbef45552d698d390aa430b527ee27830f11b.
* Unskip test
* Try older version of regex
* 💫 Update training examples and use minibatching (#2830)
<!--- Provide a general summary of your changes in the title. -->
## Description
Update the training examples in `/examples/training` to show usage of spaCy's `minibatch` and `compounding` helpers ([see here](https://spacy.io/usage/training#tips-batch-size) for details). The lack of batching in the examples has caused some confusion in the past, especially for beginners who would copy-paste the examples, update them with large training sets and experienced slow and unsatisfying results.
### Types of change
enhancements
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Visual C++ link updated (#2842) (closes #2841) [ci skip]
* New landing page
* Add contribution agreement
* Correcting lang/ru/examples.py (#2845)
* Correct some grammatical inaccuracies in lang\ru\examples.py; filled Contributor Agreement
* Correct some grammatical inaccuracies in lang\ru\examples.py
* Move contributor agreement to separate file
* Set version to 2.0.13.dev4
* Add Persian(Farsi) language support (#2797)
* Also include lowercase norm exceptions
* Remove in favour of https://github.com/explosion/spaCy/graphs/contributors
* Rule-based French Lemmatizer (#2818)
<!--- Provide a general summary of your changes in the title. -->
## Description
<!--- Use this section to describe your changes. If your changes required
testing, include information about the testing environment and the tests you
ran. If your test fixes a bug reported in an issue, don't forget to include the
issue number. If your PR is still a work in progress, that's totally fine – just
include a note to let us know. -->
Add a rule-based French Lemmatizer following the english one and the excellent PR for [greek language optimizations](https://github.com/explosion/spaCy/pull/2558) to adapt the Lemmatizer class.
### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->
- Lemma dictionary used can be found [here](http://infolingu.univ-mlv.fr/DonneesLinguistiques/Dictionnaires/telechargement.html), I used the XML version.
- Add several files containing exhaustive list of words for each part of speech
- Add some lemma rules
- Add POS that are not checked in the standard Lemmatizer, i.e PRON, DET, ADV and AUX
- Modify the Lemmatizer class to check in lookup table as a last resort if POS not mentionned
- Modify the lemmatize function to check in lookup table as a last resort
- Init files are updated so the model can support all the functionalities mentioned above
- Add words to tokenizer_exceptions_list.py in respect to regex used in tokenizer_exceptions.py
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [X] I have submitted the spaCy Contributor Agreement.
- [X] I ran the tests, and all new and existing tests passed.
- [X] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Set version to 2.0.13
* Fix formatting and consistency
* Update docs for new version [ci skip]
* Increment version [ci skip]
* Add info on wheels [ci skip]
* Adding "This is a sentence" example to Sinhala (#2846)
* Add wheels badge
* Update badge [ci skip]
* Update README.rst [ci skip]
* Update murmurhash pin
* Increment version to 2.0.14.dev0
* Update GPU docs for v2.0.14
* Add wheel to setup_requires
* Import prefer_gpu and require_gpu functions from Thinc
* Add tests for prefer_gpu() and require_gpu()
* Update requirements and setup.py
* Workaround bug in thinc require_gpu
* Set version to v2.0.14
* Update push-tag script
* Unhack prefer_gpu
* Require thinc 6.10.6
* Update prefer_gpu and require_gpu docs [ci skip]
* Fix specifiers for GPU
* Set version to 2.0.14.dev1
* Set version to 2.0.14
* Update Thinc version pin
* Increment version
* Fix msgpack-numpy version pin
* Increment version
* Update version to 2.0.16
* Update version [ci skip]
* Redundant ')' in the Stop words' example (#2856)
<!--- Provide a general summary of your changes in the title. -->
## Description
<!--- Use this section to describe your changes. If your changes required
testing, include information about the testing environment and the tests you
ran. If your test fixes a bug reported in an issue, don't forget to include the
issue number. If your PR is still a work in progress, that's totally fine – just
include a note to let us know. -->
### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [ ] I have submitted the spaCy Contributor Agreement.
- [ ] I ran the tests, and all new and existing tests passed.
- [ ] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Documentation improvement regarding joblib and SO (#2867)
Some documentation improvements
## Description
1. Fixed the dead URL to joblib
2. Fixed Stack Overflow brand name (with space)
### Types of change
Documentation
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* raise error when setting overlapping entities as doc.ents (#2880)
* Fix out-of-bounds access in NER training
The helper method state.B(1) gets the index of the first token of the
buffer, or -1 if no such token exists. Normally this is safe because we
pass this to functions like state.safe_get(), which returns an empty
token. Here we used it directly as an array index, which is not okay!
This error may have been the cause of out-of-bounds access errors during
training. Similar errors may still be around, so much be hunted down.
Hunting this one down took a long time...I printed out values across
training runs and diffed, looking for points of divergence between
runs, when no randomness should be allowed.
* Change PyThaiNLP Url (#2876)
* Fix missing comma
* Add example showing a fix-up rule for space entities
* Set version to 2.0.17.dev0
* Update regex version
* Revert "Update regex version"
This reverts commit 62358dd867d15bc6a475942dff34effba69dd70a.
* Try setting older regex version, to align with conda
* Set version to 2.0.17
* Add spacy-js to universe [ci-skip]
* Add spacy-raspberry to universe (closes #2889)
* Add script to validate universe json [ci skip]
* Removed space in docs + added contributor indo (#2909)
* - removed unneeded space in documentation
* - added contributor info
* Allow input text of length up to max_length, inclusive (#2922)
* Include universe spec for spacy-wordnet component (#2919)
* feat: include universe spec for spacy-wordnet component
* chore: include spaCy contributor agreement
* Minor formatting changes [ci skip]
* Fix image [ci skip]
Twitter URL doesn't work on live site
* Check if the word is in one of the regular lists specific to each POS (#2886)
* 💫 Create random IDs for SVGs to prevent ID clashes (#2927)
Resolves #2924.
## Description
Fixes problem where multiple visualizations in Jupyter notebooks would have clashing arc IDs, resulting in weirdly positioned arc labels. Generating a random ID prefix so even identical parses won't receive the same IDs for consistency (even if effect of ID clash isn't noticable here.)
### Types of change
bug fix
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Fix typo [ci skip]
* fixes symbolic link on py3 and windows (#2949)
* fixes symbolic link on py3 and windows
during setup of spacy using command
python -m spacy link en_core_web_sm en
closes #2948
* Update spacy/compat.py
Co-Authored-By: cicorias <cicorias@users.noreply.github.com>
* Fix formatting
* Update universe [ci skip]
* Catalan Language Support (#2940)
* Catalan language Support
* Ddding Catalan to documentation
* Sort languages alphabetically [ci skip]
* Update tests for pytest 4.x (#2965)
<!--- Provide a general summary of your changes in the title. -->
## Description
- [x] Replace marks in params for pytest 4.0 compat ([see here](https://docs.pytest.org/en/latest/deprecations.html#marks-in-pytest-mark-parametrize))
- [x] Un-xfail passing tests (some fixes in a recent update resolved a bunch of issues, but tests were apparently never updated here)
### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
* Fix regex pin to harmonize with conda (#2964)
* Update README.rst
* Fix bug where Vocab.prune_vector did not use 'batch_size' (#2977)
Fixes #2976
* Fix typo
* Fix typo
* Remove duplicate file
* Require thinc 7.0.0.dev2
Fixes bug in gpu_ops that would use cupy instead of numpy on CPU
* Add missing import
* Fix error IDs
* Fix tests
2018-11-29 15:30:29 +00:00
|
|
|
|
`Token.text`). Exists mostly for consistency with the other
|
2017-10-27 15:07:26 +00:00
|
|
|
|
attributes.
|
2017-10-27 13:41:45 +00:00
|
|
|
|
"""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return self.vocab.strings[self.c.lex.orth]
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def lower_(self):
|
2020-05-24 15:20:58 +00:00
|
|
|
|
"""RETURNS (str): The lowercase token text. Equivalent to
|
2017-10-27 15:07:26 +00:00
|
|
|
|
`Token.text.lower()`.
|
2017-10-27 13:41:45 +00:00
|
|
|
|
"""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return self.vocab.strings[self.c.lex.lower]
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@property
|
|
|
|
|
def norm_(self):
|
2020-05-24 15:20:58 +00:00
|
|
|
|
"""RETURNS (str): The token's norm, i.e. a normalised form of the
|
2017-10-27 15:07:26 +00:00
|
|
|
|
token text. Usually set in the language's tokenizer exceptions or
|
|
|
|
|
norm exceptions.
|
2017-10-27 13:41:45 +00:00
|
|
|
|
"""
|
2024-04-16 09:51:14 +00:00
|
|
|
|
return self.vocab.strings[self.norm]
|
2018-12-08 09:49:10 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@norm_.setter
|
|
|
|
|
def norm_(self, str norm_):
|
|
|
|
|
self.c.norm = self.vocab.strings.add(norm_)
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def shape_(self):
|
2021-06-15 08:57:08 +00:00
|
|
|
|
"""RETURNS (str): Transform of the token's string, to show
|
2017-10-27 15:07:26 +00:00
|
|
|
|
orthographic features. For example, "Xxxx" or "dd".
|
2017-10-27 13:41:45 +00:00
|
|
|
|
"""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return self.vocab.strings[self.c.lex.shape]
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def prefix_(self):
|
2020-05-24 15:20:58 +00:00
|
|
|
|
"""RETURNS (str): A length-N substring from the start of the token.
|
2017-10-27 15:07:26 +00:00
|
|
|
|
Defaults to `N=1`.
|
2017-10-27 13:41:45 +00:00
|
|
|
|
"""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return self.vocab.strings[self.c.lex.prefix]
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def suffix_(self):
|
2020-05-24 15:20:58 +00:00
|
|
|
|
"""RETURNS (str): A length-N substring from the end of the token.
|
2017-10-27 15:07:26 +00:00
|
|
|
|
Defaults to `N=3`.
|
2017-10-27 13:41:45 +00:00
|
|
|
|
"""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return self.vocab.strings[self.c.lex.suffix]
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def lang_(self):
|
2020-05-24 15:20:58 +00:00
|
|
|
|
"""RETURNS (str): Language of the parent document's vocabulary,
|
2017-10-27 15:07:26 +00:00
|
|
|
|
e.g. 'en'.
|
2017-10-27 13:41:45 +00:00
|
|
|
|
"""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return self.vocab.strings[self.c.lex.lang]
|
2016-03-10 12:01:34 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@property
|
|
|
|
|
def lemma_(self):
|
2020-05-24 15:20:58 +00:00
|
|
|
|
"""RETURNS (str): The token lemma, i.e. the base form of the word,
|
2017-10-27 15:07:26 +00:00
|
|
|
|
with no inflectional suffixes.
|
2017-05-19 16:47:56 +00:00
|
|
|
|
"""
|
2024-04-16 09:51:14 +00:00
|
|
|
|
return self.vocab.strings[self.c.lemma]
|
2017-10-27 15:07:26 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@lemma_.setter
|
|
|
|
|
def lemma_(self, str lemma_):
|
|
|
|
|
self.c.lemma = self.vocab.strings.add(lemma_)
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@property
|
|
|
|
|
def pos_(self):
|
2020-05-24 15:20:58 +00:00
|
|
|
|
"""RETURNS (str): Coarse-grained part-of-speech tag."""
|
2024-04-16 09:51:14 +00:00
|
|
|
|
return parts_of_speech.NAMES[self.c.pos]
|
2019-03-08 10:42:26 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@pos_.setter
|
|
|
|
|
def pos_(self, pos_name):
|
|
|
|
|
if pos_name not in parts_of_speech.IDS:
|
|
|
|
|
raise ValueError(Errors.E1021.format(pp=pos_name))
|
|
|
|
|
self.c.pos = parts_of_speech.IDS[pos_name]
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@property
|
|
|
|
|
def tag_(self):
|
2020-05-24 15:20:58 +00:00
|
|
|
|
"""RETURNS (str): Fine-grained part-of-speech tag."""
|
2024-04-16 09:51:14 +00:00
|
|
|
|
return self.vocab.strings[self.c.tag]
|
2017-10-27 15:07:26 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@tag_.setter
|
|
|
|
|
def tag_(self, tag):
|
|
|
|
|
self.tag = self.vocab.strings.add(tag)
|
2015-07-13 17:20:48 +00:00
|
|
|
|
|
2021-01-13 13:20:05 +00:00
|
|
|
|
def has_dep(self):
|
|
|
|
|
"""Check whether the token has annotated dep information.
|
|
|
|
|
Returns False when the dep label is unset/missing.
|
|
|
|
|
|
|
|
|
|
RETURNS (bool): Whether the dep label is valid or not.
|
|
|
|
|
"""
|
|
|
|
|
return not Token.missing_dep(self.c)
|
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@property
|
|
|
|
|
def dep_(self):
|
2020-05-24 15:20:58 +00:00
|
|
|
|
"""RETURNS (str): The syntactic dependency label."""
|
2024-04-16 09:51:14 +00:00
|
|
|
|
return self.vocab.strings[self.c.dep]
|
2017-10-27 15:07:26 +00:00
|
|
|
|
|
2024-04-16 09:51:14 +00:00
|
|
|
|
@dep_.setter
|
|
|
|
|
def dep_(self, str label):
|
|
|
|
|
self.c.dep = self.vocab.strings.add(label)
|
2015-07-13 18:20:58 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def is_oov(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (bool): Whether the token is out-of-vocabulary."""
|
2020-06-23 11:29:51 +00:00
|
|
|
|
return self.c.lex.orth not in self.vocab.vectors
|
2015-07-26 23:50:06 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def is_stop(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (bool): Whether the token is a stop word, i.e. part of a
|
|
|
|
|
"stop list" defined by the language data.
|
2017-10-27 13:41:45 +00:00
|
|
|
|
"""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return Lexeme.c_check_flag(self.c.lex, IS_STOP)
|
2015-09-14 07:49:58 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def is_alpha(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (bool): Whether the token consists of alpha characters.
|
|
|
|
|
Equivalent to `token.text.isalpha()`.
|
2017-10-27 13:41:45 +00:00
|
|
|
|
"""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return Lexeme.c_check_flag(self.c.lex, IS_ALPHA)
|
2015-08-08 21:37:44 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def is_ascii(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (bool): Whether the token consists of ASCII characters.
|
|
|
|
|
Equivalent to `[any(ord(c) >= 128 for c in token.text)]`.
|
2017-10-27 13:41:45 +00:00
|
|
|
|
"""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return Lexeme.c_check_flag(self.c.lex, IS_ASCII)
|
2015-07-26 14:37:16 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def is_digit(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (bool): Whether the token consists of digits. Equivalent to
|
|
|
|
|
`token.text.isdigit()`.
|
2017-10-27 13:41:45 +00:00
|
|
|
|
"""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return Lexeme.c_check_flag(self.c.lex, IS_DIGIT)
|
2015-07-26 14:37:16 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def is_lower(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (bool): Whether the token is in lowercase. Equivalent to
|
|
|
|
|
`token.text.islower()`.
|
2017-10-27 13:41:45 +00:00
|
|
|
|
"""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return Lexeme.c_check_flag(self.c.lex, IS_LOWER)
|
2015-07-26 14:37:16 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def is_upper(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (bool): Whether the token is in uppercase. Equivalent to
|
|
|
|
|
`token.text.isupper()`
|
2017-10-27 13:41:45 +00:00
|
|
|
|
"""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return Lexeme.c_check_flag(self.c.lex, IS_UPPER)
|
2017-10-27 13:41:45 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def is_title(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (bool): Whether the token is in titlecase. Equivalent to
|
|
|
|
|
`token.text.istitle()`.
|
2017-10-27 13:41:45 +00:00
|
|
|
|
"""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return Lexeme.c_check_flag(self.c.lex, IS_TITLE)
|
2015-07-26 14:37:16 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def is_punct(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (bool): Whether the token is punctuation."""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return Lexeme.c_check_flag(self.c.lex, IS_PUNCT)
|
2015-07-26 14:37:16 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def is_space(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (bool): Whether the token consists of whitespace characters.
|
|
|
|
|
Equivalent to `token.text.isspace()`.
|
2017-10-27 13:41:45 +00:00
|
|
|
|
"""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return Lexeme.c_check_flag(self.c.lex, IS_SPACE)
|
2017-02-26 21:27:11 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def is_bracket(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (bool): Whether the token is a bracket."""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return Lexeme.c_check_flag(self.c.lex, IS_BRACKET)
|
2016-02-04 12:04:16 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def is_quote(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (bool): Whether the token is a quotation mark."""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return Lexeme.c_check_flag(self.c.lex, IS_QUOTE)
|
2016-02-04 12:04:16 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def is_left_punct(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (bool): Whether the token is a left punctuation mark."""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return Lexeme.c_check_flag(self.c.lex, IS_LEFT_PUNCT)
|
2016-02-04 12:04:16 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def is_right_punct(self):
|
2018-12-14 09:11:11 +00:00
|
|
|
|
"""RETURNS (bool): Whether the token is a right punctuation mark."""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return Lexeme.c_check_flag(self.c.lex, IS_RIGHT_PUNCT)
|
2015-07-26 14:37:16 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def is_currency(self):
|
2018-02-11 17:55:48 +00:00
|
|
|
|
"""RETURNS (bool): Whether the token is a currency symbol."""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return Lexeme.c_check_flag(self.c.lex, IS_CURRENCY)
|
2018-02-11 17:55:48 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def like_url(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (bool): Whether the token resembles a URL."""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return Lexeme.c_check_flag(self.c.lex, LIKE_URL)
|
2015-08-08 21:37:44 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def like_num(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (bool): Whether the token resembles a number, e.g. "10.9",
|
|
|
|
|
"10", "ten", etc.
|
2017-10-27 13:41:45 +00:00
|
|
|
|
"""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return Lexeme.c_check_flag(self.c.lex, LIKE_NUM)
|
2015-07-26 14:37:16 +00:00
|
|
|
|
|
2019-03-11 14:59:09 +00:00
|
|
|
|
@property
|
|
|
|
|
def like_email(self):
|
2017-10-27 15:07:26 +00:00
|
|
|
|
"""RETURNS (bool): Whether the token resembles an email address."""
|
2019-03-11 14:59:09 +00:00
|
|
|
|
return Lexeme.c_check_flag(self.c.lex, LIKE_EMAIL)
|