2020-02-18 14:38:18 +00:00
|
|
|
from thinc.api import Model, set_dropout_rate
|
|
|
|
|
2020-01-29 16:06:46 +00:00
|
|
|
from .pipes import Pipe
|
|
|
|
from ..gold import Example
|
|
|
|
from ..tokens import Doc
|
|
|
|
from ..vocab import Vocab
|
|
|
|
from ..language import component
|
2020-02-27 17:42:27 +00:00
|
|
|
from ..util import link_vectors_to_models, minibatch, eg2doc
|
2020-05-19 14:20:03 +00:00
|
|
|
from .defaults import default_tok2vec
|
2020-01-29 16:06:46 +00:00
|
|
|
|
|
|
|
|
2020-05-19 14:20:03 +00:00
|
|
|
@component("tok2vec", assigns=["doc.tensor"], default_model=default_tok2vec)
|
2020-01-29 16:06:46 +00:00
|
|
|
class Tok2Vec(Pipe):
|
|
|
|
@classmethod
|
2020-02-27 17:42:27 +00:00
|
|
|
def from_nlp(cls, nlp, model, **cfg):
|
|
|
|
return cls(nlp.vocab, model, **cfg)
|
2020-01-29 16:06:46 +00:00
|
|
|
|
2020-02-27 17:42:27 +00:00
|
|
|
def __init__(self, vocab, model, **cfg):
|
2020-01-29 16:06:46 +00:00
|
|
|
"""Construct a new statistical model. Weights are not allocated on
|
|
|
|
initialisation.
|
|
|
|
vocab (Vocab): A `Vocab` instance. The model must share the same `Vocab`
|
|
|
|
instance with the `Doc` objects it will process.
|
|
|
|
**cfg: Config parameters.
|
|
|
|
"""
|
|
|
|
self.vocab = vocab
|
|
|
|
self.model = model
|
|
|
|
self.cfg = dict(cfg)
|
|
|
|
self.listeners = []
|
|
|
|
|
|
|
|
def create_listener(self):
|
2020-02-18 14:38:18 +00:00
|
|
|
listener = Tok2VecListener(
|
|
|
|
upstream_name="tok2vec", width=self.model.get_dim("nO")
|
|
|
|
)
|
2020-01-29 16:06:46 +00:00
|
|
|
self.listeners.append(listener)
|
|
|
|
|
|
|
|
def add_listener(self, listener):
|
|
|
|
self.listeners.append(listener)
|
|
|
|
|
|
|
|
def find_listeners(self, model):
|
|
|
|
for node in model.walk():
|
|
|
|
if isinstance(node, Tok2VecListener) and node.upstream_name == self.name:
|
|
|
|
self.add_listener(node)
|
|
|
|
|
|
|
|
def __call__(self, doc):
|
|
|
|
"""Add context-sensitive vectors to a `Doc`, e.g. from a CNN or LSTM
|
|
|
|
model. Vectors are set to the `Doc.tensor` attribute.
|
|
|
|
docs (Doc or iterable): One or more documents to add vectors to.
|
|
|
|
RETURNS (dict or None): Intermediate computations.
|
|
|
|
"""
|
|
|
|
tokvecses = self.predict([doc])
|
|
|
|
self.set_annotations([doc], tokvecses)
|
|
|
|
return doc
|
|
|
|
|
|
|
|
def pipe(self, stream, batch_size=128, n_threads=-1, as_example=False):
|
|
|
|
"""Process `Doc` objects as a stream.
|
|
|
|
stream (iterator): A sequence of `Doc` objects to process.
|
|
|
|
batch_size (int): Number of `Doc` objects to group.
|
|
|
|
n_threads (int): Number of threads.
|
|
|
|
YIELDS (iterator): A sequence of `Doc` objects, in order of input.
|
|
|
|
"""
|
|
|
|
for batch in minibatch(stream, batch_size):
|
|
|
|
batch = list(batch)
|
|
|
|
if as_example:
|
|
|
|
docs = [eg2doc(doc) for doc in batch]
|
|
|
|
else:
|
|
|
|
docs = batch
|
|
|
|
tokvecses = self.predict(docs)
|
|
|
|
self.set_annotations(docs, tokvecses)
|
|
|
|
yield from batch
|
|
|
|
|
|
|
|
def predict(self, docs):
|
|
|
|
"""Return a single tensor for a batch of documents.
|
|
|
|
docs (iterable): A sequence of `Doc` objects.
|
|
|
|
RETURNS (object): Vector representations for each token in the documents.
|
|
|
|
"""
|
|
|
|
tokvecs = self.model.predict(docs)
|
|
|
|
batch_id = Tok2VecListener.get_batch_id(docs)
|
|
|
|
for listener in self.listeners:
|
|
|
|
listener.receive(batch_id, tokvecs, None)
|
|
|
|
return tokvecs
|
|
|
|
|
|
|
|
def set_annotations(self, docs, tokvecses):
|
|
|
|
"""Set the tensor attribute for a batch of documents.
|
|
|
|
docs (iterable): A sequence of `Doc` objects.
|
|
|
|
tokvecs (object): Vector representation for each token in the documents.
|
|
|
|
"""
|
|
|
|
for doc, tokvecs in zip(docs, tokvecses):
|
|
|
|
assert tokvecs.shape[0] == len(doc)
|
|
|
|
doc.tensor = tokvecs
|
|
|
|
|
|
|
|
def update(self, examples, drop=0.0, sgd=None, losses=None, set_annotations=False):
|
|
|
|
"""Update the model.
|
|
|
|
examples (iterable): A batch of examples
|
|
|
|
drop (float): The droput rate.
|
|
|
|
sgd (callable): An optimizer.
|
|
|
|
RETURNS (dict): Results from the update.
|
|
|
|
"""
|
|
|
|
if losses is None:
|
|
|
|
losses = {}
|
|
|
|
examples = Example.to_example_objects(examples)
|
|
|
|
docs = [eg.doc for eg in examples]
|
|
|
|
if isinstance(docs, Doc):
|
|
|
|
docs = [docs]
|
|
|
|
set_dropout_rate(self.model, drop)
|
|
|
|
tokvecs, bp_tokvecs = self.model.begin_update(docs)
|
2020-02-18 14:38:18 +00:00
|
|
|
|
2020-04-21 17:30:41 +00:00
|
|
|
d_tokvecs = [self.model.ops.alloc2f(*t2v.shape) for t2v in tokvecs]
|
|
|
|
losses.setdefault(self.name, 0.0)
|
|
|
|
|
|
|
|
def accumulate_gradient(one_d_tokvecs):
|
|
|
|
"""Accumulate tok2vec loss and gradient. This is passed as a callback
|
|
|
|
to all but the last listener. Only the last one does the backprop.
|
|
|
|
"""
|
|
|
|
nonlocal d_tokvecs
|
|
|
|
for i in range(len(one_d_tokvecs)):
|
|
|
|
d_tokvecs[i] += one_d_tokvecs[i]
|
|
|
|
losses[self.name] += float((one_d_tokvecs[i] ** 2).sum())
|
|
|
|
|
|
|
|
def backprop(one_d_tokvecs):
|
|
|
|
"""Callback to actually do the backprop. Passed to last listener."""
|
|
|
|
accumulate_gradient(one_d_tokvecs)
|
|
|
|
d_docs = bp_tokvecs(d_tokvecs)
|
|
|
|
if sgd is not None:
|
|
|
|
self.model.finish_update(sgd)
|
|
|
|
return d_docs
|
2020-01-29 16:06:46 +00:00
|
|
|
|
|
|
|
batch_id = Tok2VecListener.get_batch_id(docs)
|
2020-04-21 17:30:41 +00:00
|
|
|
for listener in self.listeners[:-1]:
|
|
|
|
listener.receive(batch_id, tokvecs, accumulate_gradient)
|
|
|
|
self.listeners[-1].receive(batch_id, tokvecs, backprop)
|
2020-01-29 16:06:46 +00:00
|
|
|
if set_annotations:
|
|
|
|
self.set_annotations(docs, tokvecs)
|
|
|
|
|
|
|
|
def get_loss(self, docs, golds, scores):
|
|
|
|
pass
|
|
|
|
|
2020-02-18 14:38:18 +00:00
|
|
|
def begin_training(
|
|
|
|
self, get_examples=lambda: [], pipeline=None, sgd=None, **kwargs
|
|
|
|
):
|
2020-01-29 16:06:46 +00:00
|
|
|
"""Allocate models and pre-process training data
|
|
|
|
|
|
|
|
get_examples (function): Function returning example training data.
|
|
|
|
pipeline (list): The pipeline the model is part of.
|
|
|
|
"""
|
2020-03-29 17:40:36 +00:00
|
|
|
docs = [Doc(Vocab(), words=["hello"])]
|
|
|
|
self.model.initialize(X=docs)
|
2020-01-29 16:06:46 +00:00
|
|
|
link_vectors_to_models(self.vocab)
|
|
|
|
|
|
|
|
|
|
|
|
class Tok2VecListener(Model):
|
|
|
|
"""A layer that gets fed its answers from an upstream connection,
|
|
|
|
for instance from a component earlier in the pipeline.
|
|
|
|
"""
|
2020-02-18 14:38:18 +00:00
|
|
|
|
2020-01-29 16:06:46 +00:00
|
|
|
name = "tok2vec-listener"
|
|
|
|
|
|
|
|
def __init__(self, upstream_name, width):
|
|
|
|
Model.__init__(self, name=self.name, forward=forward, dims={"nO": width})
|
|
|
|
self.upstream_name = upstream_name
|
|
|
|
self._batch_id = None
|
|
|
|
self._outputs = None
|
|
|
|
self._backprop = None
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def get_batch_id(cls, inputs):
|
|
|
|
return sum(sum(token.orth for token in doc) for doc in inputs)
|
|
|
|
|
|
|
|
def receive(self, batch_id, outputs, backprop):
|
|
|
|
self._batch_id = batch_id
|
|
|
|
self._outputs = outputs
|
|
|
|
self._backprop = backprop
|
|
|
|
|
|
|
|
def verify_inputs(self, inputs):
|
|
|
|
if self._batch_id is None and self._outputs is None:
|
2020-06-12 00:02:07 +00:00
|
|
|
raise ValueError("The Tok2Vec listener did not receive valid input.")
|
2020-01-29 16:06:46 +00:00
|
|
|
else:
|
|
|
|
batch_id = self.get_batch_id(inputs)
|
|
|
|
if batch_id != self._batch_id:
|
|
|
|
raise ValueError(f"Mismatched IDs! {batch_id} vs {self._batch_id}")
|
|
|
|
else:
|
|
|
|
return True
|
|
|
|
|
|
|
|
|
|
|
|
def forward(model: Tok2VecListener, inputs, is_train):
|
|
|
|
if is_train:
|
|
|
|
model.verify_inputs(inputs)
|
|
|
|
return model._outputs, model._backprop
|
|
|
|
else:
|
|
|
|
return [doc.tensor for doc in inputs], lambda dX: []
|