spaCy/examples/keras_parikh_entailment/keras_decomposable_attentio...

267 lines
9.8 KiB
Python
Raw Normal View History

2016-11-01 00:51:54 +00:00
# Semantic similarity with decomposable attention (using spaCy and Keras)
# Practical state-of-the-art text similarity with spaCy and Keras
import numpy
from keras.layers import InputSpec, Layer, Input, Dense, merge
from keras.layers import Lambda, Activation, Dropout, Embedding, TimeDistributed
from keras.layers import Bidirectional, GRU, LSTM
from keras.layers.noise import GaussianNoise
from keras.layers.advanced_activations import ELU
2016-11-01 00:51:54 +00:00
import keras.backend as K
from keras.models import Sequential, Model, model_from_json
from keras.regularizers import l2
from keras.optimizers import Adam
from keras.layers.normalization import BatchNormalization
def build_model(vectors, shape, settings):
2016-11-01 00:51:54 +00:00
'''Compile the model.'''
max_length, nr_hidden, nr_class = shape
# Declare inputs.
ids1 = Input(shape=(max_length,), dtype='int32', name='words1')
ids2 = Input(shape=(max_length,), dtype='int32', name='words2')
# Construct operations, which we'll chain together.
embed = _StaticEmbedding(vectors, max_length, nr_hidden, dropout=0.2, nr_tune=5000)
if settings['gru_encode']:
encode = _BiRNNEncoding(max_length, nr_hidden, dropout=settings['dropout'])
attend = _Attention(max_length, nr_hidden, dropout=settings['dropout'])
2016-11-01 00:51:54 +00:00
align = _SoftAlignment(max_length, nr_hidden)
compare = _Comparison(max_length, nr_hidden, dropout=settings['dropout'])
entail = _Entailment(nr_hidden, nr_class, dropout=settings['dropout'])
2016-11-01 00:51:54 +00:00
# Declare the model as a computational graph.
sent1 = embed(ids1) # Shape: (i, n)
sent2 = embed(ids2) # Shape: (j, n)
if settings['gru_encode']:
sent1 = encode(sent1)
sent2 = encode(sent2)
2016-11-01 00:51:54 +00:00
attention = attend(sent1, sent2) # Shape: (i, j)
align1 = align(sent2, attention)
align2 = align(sent1, attention, transpose=True)
feats1 = compare(sent1, align1)
feats2 = compare(sent2, align2)
scores = entail(feats1, feats2)
# Now that we have the input/output, we can construct the Model object...
model = Model(input=[ids1, ids2], output=[scores])
# ...Compile it...
model.compile(
optimizer=Adam(lr=settings['lr']),
loss='categorical_crossentropy',
metrics=['accuracy'])
# ...And return it for training.
return model
class _StaticEmbedding(object):
def __init__(self, vectors, max_length, nr_out, nr_tune=1000, dropout=0.0):
self.nr_out = nr_out
self.max_length = max_length
2016-11-01 00:51:54 +00:00
self.embed = Embedding(
vectors.shape[0],
vectors.shape[1],
input_length=max_length,
weights=[vectors],
name='embed',
trainable=False)
self.tune = Embedding(
nr_tune,
nr_out,
input_length=max_length,
weights=None,
name='tune',
trainable=True,
dropout=dropout)
self.mod_ids = Lambda(lambda sent: sent % (nr_tune-1)+1,
output_shape=(self.max_length,))
2016-11-01 00:51:54 +00:00
self.project = TimeDistributed(
Dense(
nr_out,
activation=None,
bias=False,
name='project'))
def __call__(self, sentence):
def get_output_shape(shapes):
print(shapes)
return shapes[0]
mod_sent = self.mod_ids(sentence)
tuning = self.tune(mod_sent)
#tuning = merge([tuning, mod_sent],
# mode=lambda AB: AB[0] * (K.clip(K.cast(AB[1], 'float32'), 0, 1)),
# output_shape=(self.max_length, self.nr_out))
pretrained = self.project(self.embed(sentence))
vectors = merge([pretrained, tuning], mode='sum')
return vectors
class _BiRNNEncoding(object):
def __init__(self, max_length, nr_out, dropout=0.0):
self.model = Sequential()
self.model.add(Bidirectional(LSTM(nr_out, return_sequences=True,
dropout_W=dropout, dropout_U=dropout),
input_shape=(max_length, nr_out)))
self.model.add(TimeDistributed(Dense(nr_out, activation='relu', init='he_normal')))
self.model.add(TimeDistributed(Dropout(0.2)))
2016-11-01 00:51:54 +00:00
def __call__(self, sentence):
return self.model(sentence)
2016-11-01 00:51:54 +00:00
2016-11-01 00:51:54 +00:00
class _Attention(object):
def __init__(self, max_length, nr_hidden, dropout=0.0, L2=0.0, activation='relu'):
2016-11-01 00:51:54 +00:00
self.max_length = max_length
self.model = Sequential()
self.model.add(Dropout(dropout, input_shape=(nr_hidden,)))
2016-11-01 00:51:54 +00:00
self.model.add(
Dense(nr_hidden, name='attend1',
init='he_normal', W_regularizer=l2(L2),
input_shape=(nr_hidden,), activation='relu'))
self.model.add(Dropout(dropout))
self.model.add(Dense(nr_hidden, name='attend2',
init='he_normal', W_regularizer=l2(L2), activation='relu'))
self.model = TimeDistributed(self.model)
def __call__(self, sent1, sent2):
2016-11-11 23:12:03 +00:00
def _outer(AB):
att_ji = K.batch_dot(AB[1], K.permute_dimensions(AB[0], (0, 2, 1)))
return K.permute_dimensions(att_ji,(0, 2, 1))
2016-11-01 00:51:54 +00:00
return merge(
[self.model(sent1), self.model(sent2)],
mode=_outer,
output_shape=(self.max_length, self.max_length))
class _SoftAlignment(object):
def __init__(self, max_length, nr_hidden):
self.max_length = max_length
self.nr_hidden = nr_hidden
def __call__(self, sentence, attention, transpose=False):
2016-11-11 23:12:03 +00:00
def _normalize_attention(attmat):
att = attmat[0]
mat = attmat[1]
2016-11-01 00:51:54 +00:00
if transpose:
att = K.permute_dimensions(att,(0, 2, 1))
2016-11-01 00:51:54 +00:00
# 3d softmax
e = K.exp(att - K.max(att, axis=-1, keepdims=True))
s = K.sum(e, axis=-1, keepdims=True)
sm_att = e / s
return K.batch_dot(sm_att, mat)
2016-11-01 00:51:54 +00:00
return merge([attention, sentence], mode=_normalize_attention,
output_shape=(self.max_length, self.nr_hidden)) # Shape: (i, n)
class _Comparison(object):
def __init__(self, words, nr_hidden, L2=0.0, dropout=0.0):
2016-11-01 00:51:54 +00:00
self.words = words
self.model = Sequential()
self.model.add(Dropout(dropout, input_shape=(nr_hidden*2,)))
2016-11-01 00:51:54 +00:00
self.model.add(Dense(nr_hidden, name='compare1',
init='he_normal', W_regularizer=l2(L2)))
2016-11-01 00:51:54 +00:00
self.model.add(Activation('relu'))
self.model.add(Dropout(dropout))
self.model.add(Dense(nr_hidden, name='compare2',
W_regularizer=l2(L2), init='he_normal'))
self.model.add(Activation('relu'))
self.model = TimeDistributed(self.model)
def __call__(self, sent, align, **kwargs):
result = self.model(merge([sent, align], mode='concat')) # Shape: (i, n)
result = _GlobalSumPooling1D()(result, mask=self.words)
2016-11-13 14:52:20 +00:00
result = BatchNormalization()(result)
2016-11-01 00:51:54 +00:00
return result
class _Entailment(object):
def __init__(self, nr_hidden, nr_out, dropout=0.0, L2=0.0):
2016-11-01 00:51:54 +00:00
self.model = Sequential()
self.model.add(Dropout(dropout, input_shape=(nr_hidden*2,)))
2016-11-01 00:51:54 +00:00
self.model.add(Dense(nr_hidden, name='entail1',
init='he_normal', W_regularizer=l2(L2)))
2016-11-01 00:51:54 +00:00
self.model.add(Activation('relu'))
self.model.add(Dropout(dropout))
self.model.add(Dense(nr_hidden, name='entail2',
init='he_normal', W_regularizer=l2(L2)))
self.model.add(Activation('relu'))
2016-11-01 00:51:54 +00:00
self.model.add(Dense(nr_out, name='entail_out', activation='softmax',
W_regularizer=l2(L2), init='zero'))
def __call__(self, feats1, feats2):
features = merge([feats1, feats2], mode='concat')
return self.model(features)
class _GlobalSumPooling1D(Layer):
'''Global sum pooling operation for temporal data.
# Input shape
3D tensor with shape: `(samples, steps, features)`.
# Output shape
2D tensor with shape: `(samples, features)`.
'''
def __init__(self, **kwargs):
super(_GlobalSumPooling1D, self).__init__(**kwargs)
self.input_spec = [InputSpec(ndim=3)]
def get_output_shape_for(self, input_shape):
return (input_shape[0], input_shape[2])
def call(self, x, mask=None):
if mask is not None:
return K.sum(x * K.clip(mask, 0, 1), axis=1)
2016-11-01 00:51:54 +00:00
else:
return K.sum(x, axis=1)
def test_build_model():
vectors = numpy.ndarray((100, 8), dtype='float32')
shape = (10, 16, 3)
settings = {'lr': 0.001, 'dropout': 0.2, 'gru_encode':True}
2016-11-01 00:51:54 +00:00
model = build_model(vectors, shape, settings)
def test_fit_model():
2016-11-01 00:51:54 +00:00
def _generate_X(nr_example, length, nr_vector):
X1 = numpy.ndarray((nr_example, length), dtype='int32')
X1 *= X1 < nr_vector
X1 *= 0 <= X1
X2 = numpy.ndarray((nr_example, length), dtype='int32')
X2 *= X2 < nr_vector
X2 *= 0 <= X2
return [X1, X2]
2016-11-01 00:51:54 +00:00
def _generate_Y(nr_example, nr_class):
ys = numpy.zeros((nr_example, nr_class), dtype='int32')
for i in range(nr_example):
ys[i, i % nr_class] = 1
return ys
vectors = numpy.ndarray((100, 8), dtype='float32')
shape = (10, 16, 3)
settings = {'lr': 0.001, 'dropout': 0.2, 'gru_encode':True}
2016-11-01 00:51:54 +00:00
model = build_model(vectors, shape, settings)
train_X = _generate_X(20, shape[0], vectors.shape[1])
train_Y = _generate_Y(20, shape[2])
dev_X = _generate_X(15, shape[0], vectors.shape[1])
dev_Y = _generate_Y(15, shape[2])
model.fit(train_X, train_Y, validation_data=(dev_X, dev_Y), nb_epoch=5,
batch_size=4)
__all__ = [build_model]