spaCy/spacy/en.pyx

192 lines
5.8 KiB
Cython
Raw Normal View History

# cython: profile=True
# cython: embedsignature=True
2014-08-21 16:42:47 +00:00
'''Tokenize English text, using a scheme that differs from the Penn Treebank 3
scheme in several important respects:
2014-08-22 14:35:48 +00:00
* Whitespace is added as tokens, except for single spaces. e.g.,
2014-08-21 16:42:47 +00:00
2014-08-28 23:59:23 +00:00
>>> [w.string for w in EN.tokenize(u'\\nHello \\tThere')]
2014-08-21 16:42:47 +00:00
[u'\\n', u'Hello', u' ', u'\\t', u'There']
* Contractions are normalized, e.g.
2014-08-28 23:59:23 +00:00
>>> [w.string for w in EN.tokenize(u"isn't ain't won't he's")]
2014-08-21 16:42:47 +00:00
[u'is', u'not', u'are', u'not', u'will', u'not', u'he', u"__s"]
* Hyphenated words are split, with the hyphen preserved, e.g.:
2014-08-28 23:59:23 +00:00
>>> [w.string for w in EN.tokenize(u'New York-based')]
2014-08-21 16:42:47 +00:00
[u'New', u'York', u'-', u'based']
2014-08-22 14:35:48 +00:00
Other improvements:
2014-08-21 16:42:47 +00:00
* Email addresses, URLs, European-formatted dates and other numeric entities not
found in the PTB are tokenized correctly
* Heuristic handling of word-final periods (PTB expects sentence boundary detection
as a pre-process before tokenization.)
2014-08-22 14:35:48 +00:00
Take care to ensure your training and run-time data is tokenized according to the
2014-08-21 16:42:47 +00:00
same scheme. Tokenization problems are a major cause of poor performance for
NLP tools. If you're using a pre-trained model, the :py:mod:`spacy.ptb3` module
provides a fully Penn Treebank 3-compliant tokenizer.
'''
from __future__ import unicode_literals
cimport lang
from .typedefs cimport flags_t
import orth
2014-12-08 10:12:15 +00:00
from .tagger cimport NO_TAG, ADJ, ADV, ADP, CONJ, DET, NOUN, NUM, PRON, PRT, VERB
from .tagger cimport X, PUNCT, EOL
from .tokens cimport Morphology
2014-12-08 10:12:15 +00:00
POS_TAGS = {
'NULL': (NO_TAG, {}),
'EOL': (EOL, {}),
'CC': (CONJ, {}),
'CD': (NUM, {}),
'DT': (DET, {}),
'EX': (DET, {}),
'FW': (X, {}),
'IN': (ADP, {}),
'JJ': (ADJ, {}),
'JJR': (ADJ, {'misc': COMPARATIVE}),
'JJS': (ADJ, {'misc': SUPERLATIVE}),
'LS': (X, {}),
'MD': (VERB, {'tenspect': MODAL}),
'NN': (NOUN, {}),
'NNS': (NOUN, {'number': PLURAL}),
'NNP': (NOUN, {'misc': NAME}),
'NNPS': (NOUN, {'misc': NAME, 'number': PLURAL}),
'PDT': (DET, {}),
'POS': (PRT, {'case': GENITIVE}),
'PRP': (NOUN, {}),
'PRP$': (NOUN, {'case': GENITIVE}),
'RB': (ADV, {}),
'RBR': (ADV, {'misc': COMPARATIVE}),
'RBS': (ADV, {'misc': SUPERLATIVE}),
'RP': (PRT, {}),
'SYM': (X, {}),
'TO': (PRT, {}),
'UH': (X, {}),
'VB': (VERB, {}),
'VBD': (VERB, {'tenspect': PAST}),
'VBG': (VERB, {'tenspect': ING}),
'VBN': (VERB, {'tenspect': PASSIVE}),
'VBP': (VERB, {'tenspect': PRESENT}),
'VBZ': (VERB, {'tenspect': PRESENT, 'person': THIRD}),
'WDT': (DET, {'misc': RELATIVE}),
'WP': (PRON, {'misc': RELATIVE}),
'WP$': (PRON, {'misc': RELATIVE, 'case': GENITIVE}),
'WRB': (ADV, {'misc': RELATIVE}),
'!': (PUNCT, {}),
'#': (PUNCT, {}),
'$': (PUNCT, {}),
"''": (PUNCT, {}),
"(": (PUNCT, {}),
")": (PUNCT, {}),
"-LRB-": (PUNCT, {}),
"-RRB-": (PUNCT, {}),
".": (PUNCT, {}),
",": (PUNCT, {}),
"``": (PUNCT, {}),
":": (PUNCT, {}),
"?": (PUNCT, {}),
}
2014-09-10 16:11:13 +00:00
POS_TEMPLATES = (
(W_sic,),
(P1_sic,),
(N1_sic,),
(N2_sic,),
(P2_sic,),
(W_suffix,),
(W_prefix,),
(P1_pos,),
(P2_pos,),
(P1_pos, P2_pos),
(P1_pos, W_sic),
(P1_suffix,),
(N1_suffix,),
(W_shape,),
(W_cluster,),
(N1_cluster,),
(N2_cluster,),
(P1_cluster,),
(P2_cluster,),
)
cdef class English(Language):
2014-08-28 23:59:23 +00:00
"""English tokenizer, tightly coupled to lexicon.
Attributes:
name (unicode): The two letter code used by Wikipedia for the language.
lexicon (Lexicon): The lexicon. Exposes the lookup method.
"""
def get_props(self, unicode string):
return {'flags': self.set_flags(string), 'dense': orth.word_shape(string)}
def set_flags(self, unicode string):
cdef flags_t flags = 0
flags |= orth.is_alpha(string) << IS_ALPHA
flags |= orth.is_ascii(string) << IS_ASCII
flags |= orth.is_digit(string) << IS_DIGIT
flags |= orth.is_lower(string) << IS_LOWER
flags |= orth.is_punct(string) << IS_PUNCT
flags |= orth.is_space(string) << IS_SPACE
flags |= orth.is_title(string) << IS_TITLE
flags |= orth.is_upper(string) << IS_UPPER
flags |= orth.like_url(string) << LIKE_URL
flags |= orth.like_number(string) << LIKE_NUMBER
return flags
def set_pos(self, Tokens tokens):
cdef int i
cdef atom_t[N_CONTEXT_FIELDS] context
2014-12-08 10:12:15 +00:00
cdef TokenC* t = tokens.data
for i in range(tokens.length):
2014-12-08 10:12:15 +00:00
fill_pos_context(context, i, t)
t[i].pos = self.pos_tagger.predict(context)
_merge_morph(&t[i].morph, &self.pos_tagger.tags[t[i].pos].morph)
t[i].lemma = self.lemmatize(self.pos_tagger.tags[t[i].pos].pos, t[i].lex)
def train_pos(self, Tokens tokens, golds):
cdef int i
cdef atom_t[N_CONTEXT_FIELDS] context
c = 0
2014-12-08 10:12:15 +00:00
cdef TokenC* t = tokens.data
for i in range(tokens.length):
2014-12-08 10:12:15 +00:00
fill_pos_context(context, i, t)
t[i].pos = self.pos_tagger.predict(context, [golds[i]])
_merge_morph(&t[i].morph, &self.pos_tagger.tags[t[i].pos].morph)
t[i].lemma = self.lemmatize(self.pos_tagger.tags[t[i].pos].pos, t[i].lex)
2014-12-08 10:12:15 +00:00
c += t[i].pos == golds[i]
return c
cdef int _merge_morph(Morphology* tok_morph, const Morphology* pos_morph) except -1:
if tok_morph.number == 0:
tok_morph.number = pos_morph.number
if tok_morph.tenspect == 0:
tok_morph.tenspect = pos_morph.tenspect
if tok_morph.mood == 0:
tok_morph.mood = pos_morph.mood
if tok_morph.gender == 0:
tok_morph.gender = pos_morph.gender
if tok_morph.person == 0:
tok_morph.person = pos_morph.person
if tok_morph.case == 0:
tok_morph.case = pos_morph.case
if tok_morph.misc == 0:
tok_morph.misc = pos_morph.misc
2014-12-08 10:12:15 +00:00
2014-10-30 07:14:42 +00:00
EN = English('en')