spaCy/bin/parser/train.py

234 lines
8.3 KiB
Python
Raw Normal View History

2015-01-09 17:53:26 +00:00
#!/usr/bin/env python
from __future__ import division
from __future__ import unicode_literals
import os
from os import path
import shutil
import codecs
import random
import plac
import cProfile
import pstats
import re
2015-01-09 17:53:26 +00:00
import spacy.util
from spacy.en import English
from spacy.en.pos import POS_TEMPLATES, POS_TAGS, setup_model_dir
from spacy.syntax.util import Config
from spacy.gold import read_json_file
from spacy.gold import GoldParse
2015-01-09 17:53:26 +00:00
from spacy.scorer import Scorer
2015-01-09 17:53:26 +00:00
def _corrupt(c, noise_level):
2015-05-24 00:50:14 +00:00
if random.random() >= noise_level:
return c
elif c == ' ':
return '\n'
elif c == '\n':
return ' '
elif c in ['.', "'", "!", "?"]:
return ''
else:
return c.lower()
def add_noise(orig, noise_level):
if random.random() >= noise_level:
return orig
elif type(orig) == list:
corrupted = [_corrupt(word, noise_level) for word in orig]
corrupted = [w for w in corrupted if w]
return corrupted
else:
return ''.join(_corrupt(c, noise_level) for c in orig)
def score_model(scorer, nlp, raw_text, annot_tuples, verbose=False):
if raw_text is None:
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
else:
2015-05-31 04:49:06 +00:00
tokens = nlp.tokenizer(raw_text)
2015-06-05 13:50:24 +00:00
nlp.tagger(tokens)
nlp.entity(tokens)
nlp.parser(tokens)
gold = GoldParse(tokens, annot_tuples)
scorer.score(tokens, gold, verbose=verbose)
2015-05-30 03:23:02 +00:00
def _merge_sents(sents):
m_deps = [[], [], [], [], [], []]
m_brackets = []
i = 0
for (ids, words, tags, heads, labels, ner), brackets in sents:
m_deps[0].extend(id_ + i for id_ in ids)
m_deps[1].extend(words)
m_deps[2].extend(tags)
m_deps[3].extend(head + i for head in heads)
m_deps[4].extend(labels)
m_deps[5].extend(ner)
m_brackets.extend((b['first'] + i, b['last'] + i, b['label']) for b in brackets)
i += len(ids)
return [(m_deps, m_brackets)]
def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic',
seed=0, gold_preproc=False, n_sents=0, corruption_level=0,
2015-06-14 18:28:14 +00:00
beam_width=1, verbose=False,
use_orig_arc_eager=False):
2015-01-09 17:53:26 +00:00
dep_model_dir = path.join(model_dir, 'deps')
pos_model_dir = path.join(model_dir, 'pos')
ner_model_dir = path.join(model_dir, 'ner')
2015-01-09 17:53:26 +00:00
if path.exists(dep_model_dir):
shutil.rmtree(dep_model_dir)
if path.exists(pos_model_dir):
shutil.rmtree(pos_model_dir)
if path.exists(ner_model_dir):
shutil.rmtree(ner_model_dir)
2015-01-09 17:53:26 +00:00
os.mkdir(dep_model_dir)
os.mkdir(pos_model_dir)
os.mkdir(ner_model_dir)
setup_model_dir(sorted(POS_TAGS.keys()), POS_TAGS, POS_TEMPLATES, pos_model_dir)
2015-01-09 17:53:26 +00:00
Config.write(dep_model_dir, 'config', features=feat_set, seed=seed,
labels=Language.ParserTransitionSystem.get_labels(gold_tuples),
2015-06-02 00:01:33 +00:00
beam_width=beam_width)
Config.write(ner_model_dir, 'config', features='ner', seed=seed,
2015-06-02 00:01:33 +00:00
labels=Language.EntityTransitionSystem.get_labels(gold_tuples),
2015-06-05 13:50:24 +00:00
beam_width=0)
if n_sents > 0:
gold_tuples = gold_tuples[:n_sents]
nlp = Language(data_dir=model_dir)
print "Itn.\tP.Loss\tUAS\tNER F.\tTag %\tToken %"
2015-01-09 17:53:26 +00:00
for itn in range(n_iter):
scorer = Scorer()
loss = 0
for raw_text, sents in gold_tuples:
2015-05-30 03:23:02 +00:00
if gold_preproc:
raw_text = None
else:
sents = _merge_sents(sents)
for annot_tuples, ctnt in sents:
if len(annot_tuples[1]) == 1:
continue
score_model(scorer, nlp, raw_text, annot_tuples,
verbose=verbose if itn >= 2 else False)
2015-05-30 03:23:02 +00:00
if raw_text is None:
words = add_noise(annot_tuples[1], corruption_level)
tokens = nlp.tokenizer.tokens_from_list(words)
else:
raw_text = add_noise(raw_text, corruption_level)
tokens = nlp.tokenizer(raw_text)
nlp.tagger(tokens)
gold = GoldParse(tokens, annot_tuples, make_projective=True)
if not gold.is_projective:
raise Exception(
"Non-projective sentence in training, after we should "
"have enforced projectivity: %s" % annot_tuples
)
loss += nlp.parser.train(tokens, gold)
2015-06-16 21:36:54 +00:00
nlp.entity.train(tokens, gold)
nlp.tagger.train(tokens, gold.tags)
random.shuffle(gold_tuples)
print '%d:\t%d\t%.3f\t%.3f\t%.3f\t%.3f' % (itn, loss, scorer.uas, scorer.ents_f,
scorer.tags_acc,
scorer.token_acc)
nlp.end_training()
2015-01-09 17:53:26 +00:00
2015-06-05 21:49:26 +00:00
def evaluate(Language, gold_tuples, model_dir, gold_preproc=False, verbose=False,
beam_width=None):
nlp = Language(data_dir=model_dir)
2015-06-05 21:49:26 +00:00
if beam_width is not None:
nlp.parser.cfg.beam_width = beam_width
scorer = Scorer()
for raw_text, sents in gold_tuples:
2015-05-30 03:23:02 +00:00
if gold_preproc:
raw_text = None
else:
sents = _merge_sents(sents)
for annot_tuples, brackets in sents:
2015-05-30 03:23:02 +00:00
if raw_text is None:
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
nlp.tagger(tokens)
2015-06-16 21:36:54 +00:00
nlp.entity(tokens)
nlp.parser(tokens)
else:
tokens = nlp(raw_text, merge_mwes=False)
gold = GoldParse(tokens, annot_tuples)
scorer.score(tokens, gold, verbose=verbose)
return scorer
def write_parses(Language, dev_loc, model_dir, out_loc, beam_width=None):
nlp = Language(data_dir=model_dir)
if beam_width is not None:
nlp.parser.cfg.beam_width = beam_width
gold_tuples = read_json_file(dev_loc)
2015-03-20 00:14:20 +00:00
scorer = Scorer()
out_file = codecs.open(out_loc, 'w', 'utf8')
for raw_text, sents in gold_tuples:
sents = _merge_sents(sents)
for annot_tuples, brackets in sents:
if raw_text is None:
tokens = nlp.tokenizer.tokens_from_list(annot_tuples[1])
nlp.tagger(tokens)
2015-06-16 21:36:54 +00:00
nlp.entity(tokens)
nlp.parser(tokens)
else:
tokens = nlp(raw_text, merge_mwes=False)
gold = GoldParse(tokens, annot_tuples)
scorer.score(tokens, gold, verbose=False)
for t in tokens:
out_file.write(
'%s\t%s\t%s\t%s\n' % (t.orth_, t.tag_, t.head.orth_, t.dep_)
)
2015-03-20 00:14:20 +00:00
return scorer
2015-02-23 19:05:04 +00:00
@plac.annotations(
train_loc=("Location of training file or directory"),
dev_loc=("Location of development file or directory"),
2015-06-05 21:49:26 +00:00
model_dir=("Location of output model directory",),
eval_only=("Skip training, and only evaluate", "flag", "e", bool),
2015-05-24 00:50:14 +00:00
corruption_level=("Amount of noise to add to training data", "option", "c", float),
gold_preproc=("Use gold-standard sentence boundaries in training?", "flag", "g", bool),
2015-03-20 00:14:20 +00:00
out_loc=("Out location", "option", "o", str),
n_sents=("Number of training sentences", "option", "n", int),
n_iter=("Number of training iterations", "option", "i", int),
verbose=("Verbose error reporting", "flag", "v", bool),
2015-06-14 18:28:14 +00:00
debug=("Debug mode", "flag", "d", bool),
2015-02-23 19:05:04 +00:00
)
def main(train_loc, dev_loc, model_dir, n_sents=0, n_iter=15, out_loc="", verbose=False,
2015-07-17 20:38:05 +00:00
debug=False, corruption_level=0.0, gold_preproc=False, eval_only=False):
2015-06-05 21:49:26 +00:00
if not eval_only:
gold_train = list(read_json_file(train_loc))
train(English, gold_train, model_dir,
feat_set='basic' if not debug else 'debug',
gold_preproc=gold_preproc, n_sents=n_sents,
corruption_level=corruption_level, n_iter=n_iter,
2015-07-17 20:38:05 +00:00
verbose=verbose)
#if out_loc:
# write_parses(English, dev_loc, model_dir, out_loc, beam_width=beam_width)
scorer = evaluate(English, list(read_json_file(dev_loc)),
2015-07-17 20:38:05 +00:00
model_dir, gold_preproc=gold_preproc, verbose=verbose)
2015-06-28 04:22:18 +00:00
print 'TOK', scorer.token_acc
print 'POS', scorer.tags_acc
print 'UAS', scorer.uas
print 'LAS', scorer.las
print 'NER P', scorer.ents_p
print 'NER R', scorer.ents_r
print 'NER F', scorer.ents_f
2015-04-19 08:31:31 +00:00
2015-01-09 17:53:26 +00:00
if __name__ == '__main__':
plac.call(main)