mirror of https://github.com/explosion/spaCy.git
313 lines
13 KiB
Markdown
313 lines
13 KiB
Markdown
|
---
|
||
|
title: TextCategorizer
|
||
|
tag: class
|
||
|
source: spacy/pipeline.pyx
|
||
|
new: 2
|
||
|
---
|
||
|
|
||
|
This class is a subclass of `Pipe` and follows the same API. The pipeline
|
||
|
component is available in the [processing pipeline](/usage/processing-pipelines)
|
||
|
via the ID `"textcat"`.
|
||
|
|
||
|
## TextCategorizer.Model {#model tag="classmethod"}
|
||
|
|
||
|
Initialize a model for the pipe. The model should implement the
|
||
|
`thinc.neural.Model` API. Wrappers are under development for most major machine
|
||
|
learning libraries.
|
||
|
|
||
|
| Name | Type | Description |
|
||
|
| ----------- | ------ | ------------------------------------- |
|
||
|
| `**kwargs` | - | Parameters for initializing the model |
|
||
|
| **RETURNS** | object | The initialized model. |
|
||
|
|
||
|
## TextCategorizer.\_\_init\_\_ {#init tag="method"}
|
||
|
|
||
|
Create a new pipeline instance. In your application, you would normally use a
|
||
|
shortcut for this and instantiate the component using its string name and
|
||
|
[`nlp.create_pipe`](/api/language#create_pipe).
|
||
|
|
||
|
> #### Example
|
||
|
>
|
||
|
> ```python
|
||
|
> # Construction via create_pipe
|
||
|
> textcat = nlp.create_pipe("textcat")
|
||
|
>
|
||
|
> # Construction from class
|
||
|
> from spacy.pipeline import TextCategorizer
|
||
|
> textcat = TextCategorizer(nlp.vocab)
|
||
|
> textcat.from_disk("/path/to/model")
|
||
|
> ```
|
||
|
|
||
|
| Name | Type | Description |
|
||
|
| ----------- | ------------------------------ | ----------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `vocab` | `Vocab` | The shared vocabulary. |
|
||
|
| `model` | `thinc.neural.Model` or `True` | The model powering the pipeline component. If no model is supplied, the model is created when you call `begin_training`, `from_disk` or `from_bytes`. |
|
||
|
| `**cfg` | - | Configuration parameters. |
|
||
|
| **RETURNS** | `TextCategorizer` | The newly constructed object. |
|
||
|
|
||
|
## TextCategorizer.\_\_call\_\_ {#call tag="method"}
|
||
|
|
||
|
Apply the pipe to one document. The document is modified in place, and returned.
|
||
|
Both [`__call__`](/api/textcategorizer#call) and
|
||
|
[`pipe`](/api/textcategorizer#pipe) delegate to the
|
||
|
[`predict`](/api/textcategorizer#predict) and
|
||
|
[`set_annotations`](/api/textcategorizer#set_annotations) methods.
|
||
|
|
||
|
> #### Example
|
||
|
>
|
||
|
> ```python
|
||
|
> textcat = TextCategorizer(nlp.vocab)
|
||
|
> doc = nlp(u"This is a sentence.")
|
||
|
> processed = textcat(doc)
|
||
|
> ```
|
||
|
|
||
|
| Name | Type | Description |
|
||
|
| ----------- | ----- | ------------------------ |
|
||
|
| `doc` | `Doc` | The document to process. |
|
||
|
| **RETURNS** | `Doc` | The processed document. |
|
||
|
|
||
|
## TextCategorizer.pipe {#pipe tag="method"}
|
||
|
|
||
|
Apply the pipe to a stream of documents. Both
|
||
|
[`__call__`](/api/textcategorizer#call) and [`pipe`](/api/textcategorizer#pipe)
|
||
|
delegate to the [`predict`](/api/textcategorizer#predict) and
|
||
|
[`set_annotations`](/api/textcategorizer#set_annotations) methods.
|
||
|
|
||
|
> #### Example
|
||
|
>
|
||
|
> ```python
|
||
|
> texts = [u"One doc", u"...", u"Lots of docs"]
|
||
|
> textcat = TextCategorizer(nlp.vocab)
|
||
|
> for doc in textcat.pipe(texts, batch_size=50):
|
||
|
> pass
|
||
|
> ```
|
||
|
|
||
|
| Name | Type | Description |
|
||
|
| ------------ | -------- | -------------------------------------------------------------------------------------------------------------- |
|
||
|
| `stream` | iterable | A stream of documents. |
|
||
|
| `batch_size` | int | The number of texts to buffer. Defaults to `128`. |
|
||
|
| `n_threads` | int | The number of worker threads to use. If `-1`, OpenMP will decide how many to use at run time. Default is `-1`. |
|
||
|
| **YIELDS** | `Doc` | Processed documents in the order of the original text. |
|
||
|
|
||
|
## TextCategorizer.predict {#predict tag="method"}
|
||
|
|
||
|
Apply the pipeline's model to a batch of docs, without modifying them.
|
||
|
|
||
|
> #### Example
|
||
|
>
|
||
|
> ```python
|
||
|
> textcat = TextCategorizer(nlp.vocab)
|
||
|
> scores = textcat.predict([doc1, doc2])
|
||
|
> ```
|
||
|
|
||
|
| Name | Type | Description |
|
||
|
| ----------- | -------- | ------------------------- |
|
||
|
| `docs` | iterable | The documents to predict. |
|
||
|
| **RETURNS** | - | Scores from the model. |
|
||
|
|
||
|
## TextCategorizer.set_annotations {#set_annotations tag="method"}
|
||
|
|
||
|
Modify a batch of documents, using pre-computed scores.
|
||
|
|
||
|
> #### Example
|
||
|
>
|
||
|
> ```python
|
||
|
> textcat = TextCategorizer(nlp.vocab)
|
||
|
> scores = textcat.predict([doc1, doc2])
|
||
|
> textcat.set_annotations([doc1, doc2], scores)
|
||
|
> ```
|
||
|
|
||
|
| Name | Type | Description |
|
||
|
| -------- | -------- | --------------------------------------------------------- |
|
||
|
| `docs` | iterable | The documents to modify. |
|
||
|
| `scores` | - | The scores to set, produced by `TextCategorizer.predict`. |
|
||
|
|
||
|
## TextCategorizer.update {#update tag="method"}
|
||
|
|
||
|
Learn from a batch of documents and gold-standard information, updating the
|
||
|
pipe's model. Delegates to [`predict`](/api/textcategorizer#predict) and
|
||
|
[`get_loss`](/api/textcategorizer#get_loss).
|
||
|
|
||
|
> #### Example
|
||
|
>
|
||
|
> ```python
|
||
|
> textcat = TextCategorizer(nlp.vocab)
|
||
|
> losses = {}
|
||
|
> optimizer = nlp.begin_training()
|
||
|
> textcat.update([doc1, doc2], [gold1, gold2], losses=losses, sgd=optimizer)
|
||
|
> ```
|
||
|
|
||
|
| Name | Type | Description |
|
||
|
| -------- | -------- | -------------------------------------------------------------------------------------------- |
|
||
|
| `docs` | iterable | A batch of documents to learn from. |
|
||
|
| `golds` | iterable | The gold-standard data. Must have the same length as `docs`. |
|
||
|
| `drop` | float | The dropout rate. |
|
||
|
| `sgd` | callable | The optimizer. Should take two arguments `weights` and `gradient`, and an optional ID. |
|
||
|
| `losses` | dict | Optional record of the loss during training. The value keyed by the model's name is updated. |
|
||
|
|
||
|
## TextCategorizer.get_loss {#get_loss tag="method"}
|
||
|
|
||
|
Find the loss and gradient of loss for the batch of documents and their
|
||
|
predicted scores.
|
||
|
|
||
|
> #### Example
|
||
|
>
|
||
|
> ```python
|
||
|
> textcat = TextCategorizer(nlp.vocab)
|
||
|
> scores = textcat.predict([doc1, doc2])
|
||
|
> loss, d_loss = textcat.get_loss([doc1, doc2], [gold1, gold2], scores)
|
||
|
> ```
|
||
|
|
||
|
| Name | Type | Description |
|
||
|
| ----------- | -------- | ------------------------------------------------------------ |
|
||
|
| `docs` | iterable | The batch of documents. |
|
||
|
| `golds` | iterable | The gold-standard data. Must have the same length as `docs`. |
|
||
|
| `scores` | - | Scores representing the model's predictions. |
|
||
|
| **RETURNS** | tuple | The loss and the gradient, i.e. `(loss, gradient)`. |
|
||
|
|
||
|
## TextCategorizer.begin_training {#begin_training tag="method"}
|
||
|
|
||
|
Initialize the pipe for training, using data examples if available. If no model
|
||
|
has been initialized yet, the model is added.
|
||
|
|
||
|
> #### Example
|
||
|
>
|
||
|
> ```python
|
||
|
> textcat = TextCategorizer(nlp.vocab)
|
||
|
> nlp.pipeline.append(textcat)
|
||
|
> optimizer = textcat.begin_training(pipeline=nlp.pipeline)
|
||
|
> ```
|
||
|
|
||
|
| Name | Type | Description |
|
||
|
| ------------- | -------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `gold_tuples` | iterable | Optional gold-standard annotations from which to construct [`GoldParse`](/api/goldparse) objects. |
|
||
|
| `pipeline` | list | Optional list of pipeline components that this component is part of. |
|
||
|
| `sgd` | callable | An optional optimizer. Should take two arguments `weights` and `gradient`, and an optional ID. Will be created via [`TextCategorizer`](/api/textcategorizer#create_optimizer) if not set. |
|
||
|
| **RETURNS** | callable | An optimizer. |
|
||
|
|
||
|
## TextCategorizer.create_optimizer {#create_optimizer tag="method"}
|
||
|
|
||
|
Create an optimizer for the pipeline component.
|
||
|
|
||
|
> #### Example
|
||
|
>
|
||
|
> ```python
|
||
|
> textcat = TextCategorizer(nlp.vocab)
|
||
|
> optimizer = textcat.create_optimizer()
|
||
|
> ```
|
||
|
|
||
|
| Name | Type | Description |
|
||
|
| ----------- | -------- | -------------- |
|
||
|
| **RETURNS** | callable | The optimizer. |
|
||
|
|
||
|
## TextCategorizer.use_params {#use_params tag="method, contextmanager"}
|
||
|
|
||
|
Modify the pipe's model, to use the given parameter values.
|
||
|
|
||
|
> #### Example
|
||
|
>
|
||
|
> ```python
|
||
|
> textcat = TextCategorizer(nlp.vocab)
|
||
|
> with textcat.use_params():
|
||
|
> textcat.to_disk('/best_model')
|
||
|
> ```
|
||
|
|
||
|
| Name | Type | Description |
|
||
|
| -------- | ---- | ---------------------------------------------------------------------------------------------------------- |
|
||
|
| `params` | - | The parameter values to use in the model. At the end of the context, the original parameters are restored. |
|
||
|
|
||
|
## TextCategorizer.add_label {#add_label tag="method"}
|
||
|
|
||
|
Add a new label to the pipe.
|
||
|
|
||
|
> #### Example
|
||
|
>
|
||
|
> ```python
|
||
|
> textcat = TextCategorizer(nlp.vocab)
|
||
|
> textcat.add_label('MY_LABEL')
|
||
|
> ```
|
||
|
|
||
|
| Name | Type | Description |
|
||
|
| ------- | ------- | ----------------- |
|
||
|
| `label` | unicode | The label to add. |
|
||
|
|
||
|
## TextCategorizer.to_disk {#to_disk tag="method"}
|
||
|
|
||
|
Serialize the pipe to disk.
|
||
|
|
||
|
> #### Example
|
||
|
>
|
||
|
> ```python
|
||
|
> textcat = TextCategorizer(nlp.vocab)
|
||
|
> textcat.to_disk('/path/to/textcat')
|
||
|
> ```
|
||
|
|
||
|
| Name | Type | Description |
|
||
|
| ------ | ---------------- | --------------------------------------------------------------------------------------------------------------------- |
|
||
|
| `path` | unicode / `Path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. |
|
||
|
|
||
|
## TextCategorizer.from_disk {#from_disk tag="method"}
|
||
|
|
||
|
Load the pipe from disk. Modifies the object in place and returns it.
|
||
|
|
||
|
> #### Example
|
||
|
>
|
||
|
> ```python
|
||
|
> textcat = TextCategorizer(nlp.vocab)
|
||
|
> textcat.from_disk('/path/to/textcat')
|
||
|
> ```
|
||
|
|
||
|
| Name | Type | Description |
|
||
|
| ----------- | ----------------- | -------------------------------------------------------------------------- |
|
||
|
| `path` | unicode / `Path` | A path to a directory. Paths may be either strings or `Path`-like objects. |
|
||
|
| **RETURNS** | `TextCategorizer` | The modified `TextCategorizer` object. |
|
||
|
|
||
|
## TextCategorizer.to_bytes {#to_bytes tag="method"}
|
||
|
|
||
|
> #### example
|
||
|
>
|
||
|
> ```python
|
||
|
> textcat = TextCategorizer(nlp.vocab)
|
||
|
> textcat_bytes = textcat.to_bytes()
|
||
|
> ```
|
||
|
|
||
|
Serialize the pipe to a bytestring.
|
||
|
|
||
|
| Name | Type | Description |
|
||
|
| ----------- | ----- | ---------------------------------------------------- |
|
||
|
| `**exclude` | - | Named attributes to prevent from being serialized. |
|
||
|
| **RETURNS** | bytes | The serialized form of the `TextCategorizer` object. |
|
||
|
|
||
|
## TextCategorizer.from_bytes {#from_bytes tag="method"}
|
||
|
|
||
|
Load the pipe from a bytestring. Modifies the object in place and returns it.
|
||
|
|
||
|
> #### Example
|
||
|
>
|
||
|
> ```python
|
||
|
> textcat_bytes = textcat.to_bytes()
|
||
|
> textcat = TextCategorizer(nlp.vocab)
|
||
|
> textcat.from_bytes(textcat_bytes)
|
||
|
> ```
|
||
|
|
||
|
| Name | Type | Description |
|
||
|
| ------------ | ----------------- | ---------------------------------------------- |
|
||
|
| `bytes_data` | bytes | The data to load from. |
|
||
|
| `**exclude` | - | Named attributes to prevent from being loaded. |
|
||
|
| **RETURNS** | `TextCategorizer` | The `TextCategorizer` object. |
|
||
|
|
||
|
## TextCategorizer.labels {#labels tag="property"}
|
||
|
|
||
|
The labels currently added to the component.
|
||
|
|
||
|
> #### Example
|
||
|
>
|
||
|
> ```python
|
||
|
> textcat.add_label("MY_LABEL")
|
||
|
> assert "MY_LABEL" in textcat.labels
|
||
|
> ```
|
||
|
|
||
|
| Name | Type | Description |
|
||
|
| ----------- | ----- | ---------------------------------- |
|
||
|
| **RETURNS** | tuple | The labels added to the component. |
|