2017-01-12 11:26:26 +00:00
|
|
|
# coding: utf-8
|
2015-03-29 23:37:57 +00:00
|
|
|
from __future__ import unicode_literals
|
2017-01-12 11:26:26 +00:00
|
|
|
|
|
|
|
from ..util import get_doc
|
2018-03-25 20:16:19 +00:00
|
|
|
from ...vocab import Vocab
|
|
|
|
from ...tokens import Doc
|
2017-01-12 11:26:26 +00:00
|
|
|
|
2015-07-22 23:19:11 +00:00
|
|
|
import pytest
|
2017-01-12 11:26:26 +00:00
|
|
|
|
|
|
|
|
|
|
|
def test_spans_merge_tokens(en_tokenizer):
|
|
|
|
text = "Los Angeles start."
|
|
|
|
heads = [1, 1, 0, -1]
|
|
|
|
tokens = en_tokenizer(text)
|
|
|
|
doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=heads)
|
|
|
|
assert len(doc) == 4
|
|
|
|
assert doc[0].head.text == 'Angeles'
|
|
|
|
assert doc[1].head.text == 'start'
|
2017-11-01 15:49:11 +00:00
|
|
|
doc.merge(0, len('Los Angeles'), tag='NNP', lemma='Los Angeles', ent_type='GPE')
|
2017-01-12 11:26:26 +00:00
|
|
|
assert len(doc) == 3
|
|
|
|
assert doc[0].text == 'Los Angeles'
|
|
|
|
assert doc[0].head.text == 'start'
|
|
|
|
|
2017-03-29 06:35:03 +00:00
|
|
|
doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=heads)
|
|
|
|
assert len(doc) == 4
|
|
|
|
assert doc[0].head.text == 'Angeles'
|
|
|
|
assert doc[1].head.text == 'start'
|
|
|
|
doc.merge(0, len('Los Angeles'), tag='NNP', lemma='Los Angeles', label='GPE')
|
|
|
|
assert len(doc) == 3
|
|
|
|
assert doc[0].text == 'Los Angeles'
|
|
|
|
assert doc[0].head.text == 'start'
|
|
|
|
assert doc[0].ent_type_ == 'GPE'
|
2017-01-12 11:26:26 +00:00
|
|
|
|
|
|
|
def test_spans_merge_heads(en_tokenizer):
|
|
|
|
text = "I found a pilates class near work."
|
|
|
|
heads = [1, 0, 2, 1, -3, -1, -1, -6]
|
|
|
|
tokens = en_tokenizer(text)
|
|
|
|
doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=heads)
|
|
|
|
|
|
|
|
assert len(doc) == 8
|
2017-11-01 15:49:11 +00:00
|
|
|
doc.merge(doc[3].idx, doc[4].idx + len(doc[4]), tag=doc[4].tag_,
|
|
|
|
lemma='pilates class', ent_type='O')
|
2017-01-12 11:26:26 +00:00
|
|
|
assert len(doc) == 7
|
|
|
|
assert doc[0].head.i == 1
|
|
|
|
assert doc[1].head.i == 1
|
|
|
|
assert doc[2].head.i == 3
|
|
|
|
assert doc[3].head.i == 1
|
|
|
|
assert doc[4].head.i in [1, 3]
|
|
|
|
assert doc[5].head.i == 4
|
|
|
|
|
|
|
|
|
|
|
|
def test_span_np_merges(en_tokenizer):
|
|
|
|
text = "displaCy is a parse tool built with Javascript"
|
|
|
|
heads = [1, 0, 2, 1, -3, -1, -1, -1]
|
|
|
|
tokens = en_tokenizer(text)
|
|
|
|
doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=heads)
|
|
|
|
|
|
|
|
assert doc[4].head.i == 1
|
2017-11-01 15:49:11 +00:00
|
|
|
doc.merge(doc[2].idx, doc[4].idx + len(doc[4]), tag='NP', lemma='tool',
|
|
|
|
ent_type='O')
|
2017-01-12 11:26:26 +00:00
|
|
|
assert doc[2].head.i == 1
|
|
|
|
|
|
|
|
text = "displaCy is a lightweight and modern dependency parse tree visualization tool built with CSS3 and JavaScript."
|
|
|
|
heads = [1, 0, 8, 3, -1, -2, 4, 3, 1, 1, -9, -1, -1, -1, -1, -2, -15]
|
|
|
|
tokens = en_tokenizer(text)
|
|
|
|
doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=heads)
|
|
|
|
|
|
|
|
ents = [(e[0].idx, e[-1].idx + len(e[-1]), e.label_, e.lemma_) for e in doc.ents]
|
2015-08-05 22:35:40 +00:00
|
|
|
for start, end, label, lemma in ents:
|
2017-11-01 15:49:11 +00:00
|
|
|
merged = doc.merge(start, end, tag=label, lemma=lemma, ent_type=label)
|
2017-01-12 11:26:26 +00:00
|
|
|
assert merged != None, (start, end, label, lemma)
|
|
|
|
|
|
|
|
|
|
|
|
text = "One test with entities like New York City so the ents list is not void"
|
|
|
|
heads = [1, 11, -1, -1, -1, 1, 1, -3, 4, 2, 1, 1, 0, -1, -2]
|
|
|
|
tokens = en_tokenizer(text)
|
|
|
|
doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=heads)
|
2015-08-05 22:35:40 +00:00
|
|
|
|
2017-01-12 11:26:26 +00:00
|
|
|
for span in doc.ents:
|
|
|
|
merged = doc.merge()
|
|
|
|
assert merged != None, (span.start, span.end, span.label_, span.lemma_)
|
2016-11-09 18:57:50 +00:00
|
|
|
|
|
|
|
|
2017-01-12 11:26:26 +00:00
|
|
|
def test_spans_entity_merge(en_tokenizer):
|
|
|
|
text = "Stewart Lee is a stand up comedian who lives in England and loves Joe Pasquale.\n"
|
|
|
|
heads = [1, 1, 0, 1, 2, -1, -4, 1, -2, -1, -1, -3, -10, 1, -2, -13, -1]
|
|
|
|
tags = ['NNP', 'NNP', 'VBZ', 'DT', 'VB', 'RP', 'NN', 'WP', 'VBZ', 'IN', 'NNP', 'CC', 'VBZ', 'NNP', 'NNP', '.', 'SP']
|
|
|
|
ents = [('Stewart Lee', 'PERSON', 0, 2), ('England', 'GPE', 10, 11), ('Joe Pasquale', 'PERSON', 13, 15)]
|
2016-11-09 18:57:50 +00:00
|
|
|
|
2017-01-12 11:26:26 +00:00
|
|
|
tokens = en_tokenizer(text)
|
|
|
|
doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=heads, tags=tags, ents=ents)
|
|
|
|
assert len(doc) == 17
|
|
|
|
for ent in doc.ents:
|
2015-11-05 16:02:23 +00:00
|
|
|
label, lemma, type_ = (ent.root.tag_, ent.root.lemma_, max(w.ent_type_ for w in ent))
|
2017-11-01 15:49:11 +00:00
|
|
|
ent.merge(label=label, lemma=lemma, ent_type=type_)
|
2015-11-05 16:02:23 +00:00
|
|
|
# check looping is ok
|
2017-01-12 11:26:26 +00:00
|
|
|
assert len(doc) == 15
|
2015-11-05 16:02:23 +00:00
|
|
|
|
2015-11-07 08:27:38 +00:00
|
|
|
|
2018-03-25 20:16:19 +00:00
|
|
|
def test_spans_entity_merge_iob():
|
|
|
|
# Test entity IOB stays consistent after merging
|
|
|
|
words = ["a", "b", "c", "d", "e"]
|
|
|
|
doc = Doc(Vocab(), words=words)
|
|
|
|
doc.ents = [(doc.vocab.strings.add('ent-abc'), 0, 3),
|
|
|
|
(doc.vocab.strings.add('ent-d'), 3, 4)]
|
|
|
|
assert doc[0].ent_iob_ == "B"
|
|
|
|
assert doc[1].ent_iob_ == "I"
|
|
|
|
assert doc[2].ent_iob_ == "I"
|
|
|
|
assert doc[3].ent_iob_ == "B"
|
|
|
|
doc[0:1].merge()
|
|
|
|
assert doc[0].ent_iob_ == "B"
|
|
|
|
assert doc[1].ent_iob_ == "I"
|
|
|
|
|
|
|
|
|
2017-01-12 11:26:26 +00:00
|
|
|
def test_spans_sentence_update_after_merge(en_tokenizer):
|
|
|
|
text = "Stewart Lee is a stand up comedian. He lives in England and loves Joe Pasquale."
|
|
|
|
heads = [1, 1, 0, 1, 2, -1, -4, -5, 1, 0, -1, -1, -3, -4, 1, -2, -7]
|
|
|
|
deps = ['compound', 'nsubj', 'ROOT', 'det', 'amod', 'prt', 'attr',
|
|
|
|
'punct', 'nsubj', 'ROOT', 'prep', 'pobj', 'cc', 'conj',
|
|
|
|
'compound', 'dobj', 'punct']
|
|
|
|
|
|
|
|
tokens = en_tokenizer(text)
|
|
|
|
doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=heads, deps=deps)
|
|
|
|
sent1, sent2 = list(doc.sents)
|
2015-11-05 16:02:23 +00:00
|
|
|
init_len = len(sent1)
|
|
|
|
init_len2 = len(sent2)
|
2017-11-01 15:49:11 +00:00
|
|
|
doc[0:2].merge(label='none', lemma='none', ent_type='none')
|
|
|
|
doc[-2:].merge(label='none', lemma='none', ent_type='none')
|
2017-01-12 11:26:26 +00:00
|
|
|
assert len(sent1) == init_len - 1
|
|
|
|
assert len(sent2) == init_len2 - 1
|
|
|
|
|
|
|
|
|
|
|
|
def test_spans_subtree_size_check(en_tokenizer):
|
|
|
|
text = "Stewart Lee is a stand up comedian who lives in England and loves Joe Pasquale"
|
|
|
|
heads = [1, 1, 0, 1, 2, -1, -4, 1, -2, -1, -1, -3, -10, 1, -2]
|
|
|
|
deps = ['compound', 'nsubj', 'ROOT', 'det', 'amod', 'prt', 'attr',
|
|
|
|
'nsubj', 'relcl', 'prep', 'pobj', 'cc', 'conj', 'compound',
|
|
|
|
'dobj']
|
|
|
|
|
|
|
|
tokens = en_tokenizer(text)
|
|
|
|
doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=heads, deps=deps)
|
|
|
|
sent1 = list(doc.sents)[0]
|
2015-11-05 16:02:23 +00:00
|
|
|
init_len = len(list(sent1.root.subtree))
|
2017-11-01 15:49:11 +00:00
|
|
|
doc[0:2].merge(label='none', lemma='none', ent_type='none')
|
|
|
|
assert len(list(sent1.root.subtree)) == init_len - 1
|