spaCy/spacy/tests/lang/en/test_noun_chunks.py

32 lines
1.1 KiB
Python
Raw Normal View History

2017-01-11 17:54:56 +00:00
# coding: utf-8
from __future__ import unicode_literals
2017-06-05 14:39:04 +00:00
from ....attrs import HEAD, DEP
from ....symbols import nsubj, dobj, amod, nmod, conj, cc, root
from ....lang.en.syntax_iterators import SYNTAX_ITERATORS
from ...util import get_doc
2017-01-11 17:54:56 +00:00
import numpy
2017-06-05 14:39:04 +00:00
def test_en_noun_chunks_not_nested(en_tokenizer):
2017-01-11 17:54:56 +00:00
text = "Peter has chronic command and control issues"
heads = [1, 0, 4, 3, -1, -2, -5]
deps = ['nsubj', 'ROOT', 'amod', 'nmod', 'cc', 'conj', 'dobj']
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=heads, deps=deps)
tokens.from_array(
[HEAD, DEP],
2017-01-11 17:54:56 +00:00
numpy.asarray([[1, nsubj], [0, root], [4, amod], [3, nmod], [-1, cc],
[-2, conj], [-5, dobj]], dtype='uint64'))
2017-06-05 14:39:04 +00:00
tokens.noun_chunks_iterator = SYNTAX_ITERATORS['noun_chunks']
word_occurred = {}
for chunk in tokens.noun_chunks:
for word in chunk:
word_occurred.setdefault(word.text, 0)
word_occurred[word.text] += 1
for word, freq in word_occurred.items():
assert freq == 1, (word, [chunk.text for chunk in tokens.noun_chunks])